conex / espnet2 /train /iterable_dataset.py
tobiasc's picture
Initial commit
ad16788
import copy
from distutils.version import LooseVersion
from io import StringIO
from pathlib import Path
from typing import Callable
from typing import Collection
from typing import Dict
from typing import Iterable
from typing import Tuple
from typing import Union
import kaldiio
import numpy as np
import soundfile
import torch
from typeguard import check_argument_types
from espnet2.train.dataset import ESPnetDataset
if LooseVersion(torch.__version__) >= LooseVersion("1.2"):
from torch.utils.data.dataset import IterableDataset
else:
from torch.utils.data.dataset import Dataset as IterableDataset
def load_kaldi(input):
retval = kaldiio.load_mat(input)
if isinstance(retval, tuple):
assert len(retval) == 2, len(retval)
if isinstance(retval[0], int) and isinstance(retval[1], np.ndarray):
# sound scp case
rate, array = retval
elif isinstance(retval[1], int) and isinstance(retval[0], np.ndarray):
# Extended ark format case
array, rate = retval
else:
raise RuntimeError(f"Unexpected type: {type(retval[0])}, {type(retval[1])}")
# Multichannel wave fie
# array: (NSample, Channel) or (Nsample)
else:
# Normal ark case
assert isinstance(retval, np.ndarray), type(retval)
array = retval
return array
DATA_TYPES = {
"sound": lambda x: soundfile.read(x)[0],
"kaldi_ark": load_kaldi,
"npy": np.load,
"text_int": lambda x: np.loadtxt(
StringIO(x), ndmin=1, dtype=np.long, delimiter=" "
),
"csv_int": lambda x: np.loadtxt(StringIO(x), ndmin=1, dtype=np.long, delimiter=","),
"text_float": lambda x: np.loadtxt(
StringIO(x), ndmin=1, dtype=np.float32, delimiter=" "
),
"csv_float": lambda x: np.loadtxt(
StringIO(x), ndmin=1, dtype=np.float32, delimiter=","
),
"text": lambda x: x,
}
class IterableESPnetDataset(IterableDataset):
"""Pytorch Dataset class for ESPNet.
Examples:
>>> dataset = IterableESPnetDataset([('wav.scp', 'input', 'sound'),
... ('token_int', 'output', 'text_int')],
... )
>>> for uid, data in dataset:
... data
{'input': per_utt_array, 'output': per_utt_array}
"""
def __init__(
self,
path_name_type_list: Collection[Tuple[str, str, str]],
preprocess: Callable[
[str, Dict[str, np.ndarray]], Dict[str, np.ndarray]
] = None,
float_dtype: str = "float32",
int_dtype: str = "long",
key_file: str = None,
):
assert check_argument_types()
if len(path_name_type_list) == 0:
raise ValueError(
'1 or more elements are required for "path_name_type_list"'
)
path_name_type_list = copy.deepcopy(path_name_type_list)
self.preprocess = preprocess
self.float_dtype = float_dtype
self.int_dtype = int_dtype
self.key_file = key_file
self.debug_info = {}
non_iterable_list = []
self.path_name_type_list = []
for path, name, _type in path_name_type_list:
if name in self.debug_info:
raise RuntimeError(f'"{name}" is duplicated for data-key')
self.debug_info[name] = path, _type
if _type not in DATA_TYPES:
non_iterable_list.append((path, name, _type))
else:
self.path_name_type_list.append((path, name, _type))
if len(non_iterable_list) != 0:
# Some types doesn't support iterable mode
self.non_iterable_dataset = ESPnetDataset(
path_name_type_list=non_iterable_list,
preprocess=preprocess,
float_dtype=float_dtype,
int_dtype=int_dtype,
)
else:
self.non_iterable_dataset = None
if Path(Path(path_name_type_list[0][0]).parent, "utt2category").exists():
self.apply_utt2category = True
else:
self.apply_utt2category = False
def has_name(self, name) -> bool:
return name in self.debug_info
def names(self) -> Tuple[str, ...]:
return tuple(self.debug_info)
def __repr__(self):
_mes = self.__class__.__name__
_mes += "("
for name, (path, _type) in self.debug_info.items():
_mes += f'\n {name}: {{"path": "{path}", "type": "{_type}"}}'
_mes += f"\n preprocess: {self.preprocess})"
return _mes
def __iter__(self) -> Iterable[Tuple[Union[str, int], Dict[str, np.ndarray]]]:
if self.key_file is not None:
uid_iter = (
line.rstrip().split(maxsplit=1)[0]
for line in open(self.key_file, encoding="utf-8")
)
elif len(self.path_name_type_list) != 0:
uid_iter = (
line.rstrip().split(maxsplit=1)[0]
for line in open(self.path_name_type_list[0][0], encoding="utf-8")
)
else:
uid_iter = iter(self.non_iterable_dataset)
files = [open(lis[0], encoding="utf-8") for lis in self.path_name_type_list]
worker_info = torch.utils.data.get_worker_info()
linenum = 0
count = 0
for count, uid in enumerate(uid_iter, 1):
# If num_workers>=1, split keys
if worker_info is not None:
if (count - 1) % worker_info.num_workers != worker_info.id:
continue
# 1. Read a line from each file
while True:
keys = []
values = []
for f in files:
linenum += 1
try:
line = next(f)
except StopIteration:
raise RuntimeError(f"{uid} is not found in the files")
sps = line.rstrip().split(maxsplit=1)
if len(sps) != 2:
raise RuntimeError(
f"This line doesn't include a space:"
f" {f}:L{linenum}: {line})"
)
key, value = sps
keys.append(key)
values.append(value)
for k_idx, k in enumerate(keys):
if k != keys[0]:
raise RuntimeError(
f"Keys are mismatched. Text files (idx={k_idx}) is "
f"not sorted or not having same keys at L{linenum}"
)
# If the key is matched, break the loop
if len(keys) == 0 or keys[0] == uid:
break
# 2. Load the entry from each line and create a dict
data = {}
# 2.a. Load data streamingly
for value, (path, name, _type) in zip(values, self.path_name_type_list):
func = DATA_TYPES[_type]
# Load entry
array = func(value)
data[name] = array
if self.non_iterable_dataset is not None:
# 2.b. Load data from non-iterable dataset
_, from_non_iterable = self.non_iterable_dataset[uid]
data.update(from_non_iterable)
# 3. [Option] Apply preprocessing
# e.g. espnet2.train.preprocessor:CommonPreprocessor
if self.preprocess is not None:
data = self.preprocess(uid, data)
# 4. Force data-precision
for name in data:
value = data[name]
if not isinstance(value, np.ndarray):
raise RuntimeError(
f"All values must be converted to np.ndarray object "
f'by preprocessing, but "{name}" is still {type(value)}.'
)
# Cast to desired type
if value.dtype.kind == "f":
value = value.astype(self.float_dtype)
elif value.dtype.kind == "i":
value = value.astype(self.int_dtype)
else:
raise NotImplementedError(f"Not supported dtype: {value.dtype}")
data[name] = value
yield uid, data
if count == 0:
raise RuntimeError("No iteration")