conex / espnet2 /bin /diar_inference.py
tobiasc's picture
Initial commit
ad16788
#!/usr/bin/env python3
import argparse
import logging
from pathlib import Path
import sys
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union
import numpy as np
import torch
from tqdm import trange
from typeguard import check_argument_types
from espnet.utils.cli_utils import get_commandline_args
from espnet2.fileio.npy_scp import NpyScpWriter
from espnet2.tasks.diar import DiarizationTask
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.utils import config_argparse
from espnet2.utils.types import humanfriendly_parse_size_or_none
from espnet2.utils.types import str2bool
from espnet2.utils.types import str2triple_str
from espnet2.utils.types import str_or_none
class DiarizeSpeech:
"""DiarizeSpeech class
Examples:
>>> import soundfile
>>> diarization = DiarizeSpeech("diar_config.yaml", "diar.pth")
>>> audio, rate = soundfile.read("speech.wav")
>>> diarization(audio)
[(spk_id, start, end), (spk_id2, start2, end2)]
"""
def __init__(
self,
diar_train_config: Union[Path, str],
diar_model_file: Union[Path, str] = None,
segment_size: Optional[float] = None,
normalize_segment_scale: bool = False,
show_progressbar: bool = False,
device: str = "cpu",
dtype: str = "float32",
):
assert check_argument_types()
# 1. Build Diar model
diar_model, diar_train_args = DiarizationTask.build_model_from_file(
diar_train_config, diar_model_file, device
)
diar_model.to(dtype=getattr(torch, dtype)).eval()
self.device = device
self.dtype = dtype
self.diar_train_args = diar_train_args
self.diar_model = diar_model
# only used when processing long speech, i.e.
# segment_size is not None and hop_size is not None
self.segment_size = segment_size
self.normalize_segment_scale = normalize_segment_scale
self.show_progressbar = show_progressbar
self.num_spk = diar_model.num_spk
self.segmenting = segment_size is not None
if self.segmenting:
logging.info("Perform segment-wise speaker diarization")
logging.info("Segment length = {} sec".format(segment_size))
else:
logging.info("Perform direct speaker diarization on the input")
@torch.no_grad()
def __call__(
self, speech: Union[torch.Tensor, np.ndarray], fs: int = 8000
) -> List[torch.Tensor]:
"""Inference
Args:
speech: Input speech data (Batch, Nsamples [, Channels])
fs: sample rate
Returns:
[speaker_info1, speaker_info2, ...]
"""
assert check_argument_types()
# Input as audio signal
if isinstance(speech, np.ndarray):
speech = torch.as_tensor(speech)
assert speech.dim() > 1, speech.size()
batch_size = speech.size(0)
speech = speech.to(getattr(torch, self.dtype))
# lenghts: (B,)
lengths = speech.new_full(
[batch_size], dtype=torch.long, fill_value=speech.size(1)
)
# a. To device
speech = to_device(speech, device=self.device)
lengths = to_device(lengths, device=self.device)
if self.segmenting and lengths[0] > self.segment_size * fs:
# Segment-wise speaker diarization
num_segments = int(np.ceil(speech.size(1) / (self.segment_size * fs)))
t = T = int(self.segment_size * fs)
pad_shape = speech[:, :T].shape
diarized_wavs = []
range_ = trange if self.show_progressbar else range
for i in range_(num_segments):
st = int(i * self.segment_size * fs)
en = st + T
if en >= lengths[0]:
# en - st < T (last segment)
en = lengths[0]
speech_seg = speech.new_zeros(pad_shape)
t = en - st
speech_seg[:, :t] = speech[:, st:en]
else:
t = T
speech_seg = speech[:, st:en] # B x T [x C]
lengths_seg = speech.new_full(
[batch_size], dtype=torch.long, fill_value=T
)
# b. Diarization Forward
encoder_out, encoder_out_lens = self.diar_model.encode(
speech_seg, lengths_seg
)
spk_prediction = self.diar_model.decoder(encoder_out, encoder_out_lens)
# List[torch.Tensor(B, T, num_spks)]
diarized_wavs.append(spk_prediction)
spk_prediction = torch.cat(diarized_wavs, dim=1)
else:
# b. Diarization Forward
encoder_out, encoder_out_lens = self.diar_model.encode(speech, lengths)
spk_prediction = self.diar_model.decoder(encoder_out, encoder_out_lens)
assert spk_prediction.size(2) == self.num_spk, (
spk_prediction.size(2),
self.num_spk,
)
assert spk_prediction.size(0) == batch_size, (
spk_prediction.size(0),
batch_size,
)
spk_prediction = spk_prediction.cpu().numpy()
spk_prediction = 1 / (1 + np.exp(-spk_prediction))
return spk_prediction
def inference(
output_dir: str,
batch_size: int,
dtype: str,
fs: int,
ngpu: int,
seed: int,
num_workers: int,
log_level: Union[int, str],
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
key_file: Optional[str],
diar_train_config: str,
diar_model_file: str,
allow_variable_data_keys: bool,
segment_size: Optional[float],
show_progressbar: bool,
):
assert check_argument_types()
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1:
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build separate_speech
diarize_speech = DiarizeSpeech(
diar_train_config=diar_train_config,
diar_model_file=diar_model_file,
segment_size=segment_size,
show_progressbar=show_progressbar,
device=device,
dtype=dtype,
)
# 3. Build data-iterator
loader = DiarizationTask.build_streaming_iterator(
data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=DiarizationTask.build_preprocess_fn(
diarize_speech.diar_train_args, False
),
collate_fn=DiarizationTask.build_collate_fn(
diarize_speech.diar_train_args, False
),
allow_variable_data_keys=allow_variable_data_keys,
inference=True,
)
# 4. Start for-loop
writer = NpyScpWriter(f"{output_dir}/predictions", f"{output_dir}/diarize.scp")
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
batch = {k: v for k, v in batch.items() if not k.endswith("_lengths")}
spk_predictions = diarize_speech(**batch)
for b in range(batch_size):
writer[keys[b]] = spk_predictions[b]
writer.close()
def get_parser():
parser = config_argparse.ArgumentParser(
description="Speaker Diarization inference",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Note(kamo): Use '_' instead of '-' as separator.
# '-' is confusing if written in yaml.
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--fs",
type=humanfriendly_parse_size_or_none,
default=8000,
help="Sampling rate",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=True,
action="append",
)
group.add_argument("--key_file", type=str_or_none)
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
group = parser.add_argument_group("The model configuration related")
group.add_argument("--diar_train_config", type=str, required=True)
group.add_argument("--diar_model_file", type=str, required=True)
group = parser.add_argument_group("Data loading related")
group.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
group = parser.add_argument_group("Diarize speech related")
group.add_argument(
"--segment_size",
type=float,
default=None,
help="Segment length in seconds for segment-wise speaker diarization",
)
group.add_argument(
"--show_progressbar",
type=str2bool,
default=False,
help="Whether to show a progress bar when performing segment-wise speaker "
"diarization",
)
return parser
def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
inference(**kwargs)
if __name__ == "__main__":
main()