|
import logging |
|
from typing import Iterator |
|
from typing import Tuple |
|
|
|
from typeguard import check_argument_types |
|
|
|
from espnet2.fileio.read_text import read_2column_text |
|
from espnet2.samplers.abs_sampler import AbsSampler |
|
|
|
|
|
class UnsortedBatchSampler(AbsSampler): |
|
"""BatchSampler with constant batch-size. |
|
|
|
Any sorting is not done in this class, |
|
so no length information is required, |
|
This class is convenient for decoding mode, |
|
or not seq2seq learning e.g. classification. |
|
|
|
Args: |
|
batch_size: |
|
key_file: |
|
""" |
|
|
|
def __init__( |
|
self, |
|
batch_size: int, |
|
key_file: str, |
|
drop_last: bool = False, |
|
utt2category_file: str = None, |
|
): |
|
assert check_argument_types() |
|
assert batch_size > 0 |
|
self.batch_size = batch_size |
|
self.key_file = key_file |
|
self.drop_last = drop_last |
|
|
|
|
|
|
|
|
|
utt2any = read_2column_text(key_file) |
|
if len(utt2any) == 0: |
|
logging.warning(f"{key_file} is empty") |
|
|
|
keys = list(utt2any) |
|
if len(keys) == 0: |
|
raise RuntimeError(f"0 lines found: {key_file}") |
|
|
|
category2utt = {} |
|
if utt2category_file is not None: |
|
utt2category = read_2column_text(utt2category_file) |
|
if set(utt2category) != set(keys): |
|
raise RuntimeError( |
|
f"keys are mismatched between {utt2category_file} != {key_file}" |
|
) |
|
for k, v in utt2category.items(): |
|
category2utt.setdefault(v, []).append(k) |
|
else: |
|
category2utt["default_category"] = keys |
|
|
|
self.batch_list = [] |
|
for d, v in category2utt.items(): |
|
category_keys = v |
|
|
|
N = max(len(category_keys) // batch_size, 1) |
|
if not self.drop_last: |
|
|
|
|
|
cur_batch_list = [ |
|
category_keys[i * len(keys) // N : (i + 1) * len(keys) // N] |
|
for i in range(N) |
|
] |
|
else: |
|
cur_batch_list = [ |
|
tuple(category_keys[i * batch_size : (i + 1) * batch_size]) |
|
for i in range(N) |
|
] |
|
self.batch_list.extend(cur_batch_list) |
|
|
|
def __repr__(self): |
|
return ( |
|
f"{self.__class__.__name__}(" |
|
f"N-batch={len(self)}, " |
|
f"batch_size={self.batch_size}, " |
|
f"key_file={self.key_file}, " |
|
) |
|
|
|
def __len__(self): |
|
return len(self.batch_list) |
|
|
|
def __iter__(self) -> Iterator[Tuple[str, ...]]: |
|
return iter(self.batch_list) |
|
|