conex / espnet /utils /io_utils.py
tobiasc's picture
Initial commit
ad16788
raw
history blame
24.8 kB
from collections import OrderedDict
import io
import logging
import os
import h5py
import kaldiio
import numpy as np
import soundfile
from espnet.transform.transformation import Transformation
class LoadInputsAndTargets(object):
"""Create a mini-batch from a list of dicts
>>> batch = [('utt1',
... dict(input=[dict(feat='some.ark:123',
... filetype='mat',
... name='input1',
... shape=[100, 80])],
... output=[dict(tokenid='1 2 3 4',
... name='target1',
... shape=[4, 31])]]))
>>> l = LoadInputsAndTargets()
>>> feat, target = l(batch)
:param: str mode: Specify the task mode, "asr" or "tts"
:param: str preprocess_conf: The path of a json file for pre-processing
:param: bool load_input: If False, not to load the input data
:param: bool load_output: If False, not to load the output data
:param: bool sort_in_input_length: Sort the mini-batch in descending order
of the input length
:param: bool use_speaker_embedding: Used for tts mode only
:param: bool use_second_target: Used for tts mode only
:param: dict preprocess_args: Set some optional arguments for preprocessing
:param: Optional[dict] preprocess_args: Used for tts mode only
"""
def __init__(
self,
mode="asr",
preprocess_conf=None,
load_input=True,
load_output=True,
sort_in_input_length=True,
use_speaker_embedding=False,
use_second_target=False,
preprocess_args=None,
keep_all_data_on_mem=False,
):
self._loaders = {}
if mode not in ["asr", "tts", "mt", "vc"]:
raise ValueError("Only asr or tts are allowed: mode={}".format(mode))
if preprocess_conf is not None:
self.preprocessing = Transformation(preprocess_conf)
logging.warning(
"[Experimental feature] Some preprocessing will be done "
"for the mini-batch creation using {}".format(self.preprocessing)
)
else:
# If conf doesn't exist, this function don't touch anything.
self.preprocessing = None
if use_second_target and use_speaker_embedding and mode == "tts":
raise ValueError(
'Choose one of "use_second_target" and ' '"use_speaker_embedding "'
)
if (
(use_second_target or use_speaker_embedding)
and mode != "tts"
and mode != "vc"
):
logging.warning(
'"use_second_target" and "use_speaker_embedding" is '
"used only for tts or vc mode"
)
self.mode = mode
self.load_output = load_output
self.load_input = load_input
self.sort_in_input_length = sort_in_input_length
self.use_speaker_embedding = use_speaker_embedding
self.use_second_target = use_second_target
if preprocess_args is None:
self.preprocess_args = {}
else:
assert isinstance(preprocess_args, dict), type(preprocess_args)
self.preprocess_args = dict(preprocess_args)
self.keep_all_data_on_mem = keep_all_data_on_mem
def __call__(self, batch, return_uttid=False):
"""Function to load inputs and targets from list of dicts
:param List[Tuple[str, dict]] batch: list of dict which is subset of
loaded data.json
:param bool return_uttid: return utterance ID information for visualization
:return: list of input token id sequences [(L_1), (L_2), ..., (L_B)]
:return: list of input feature sequences
[(T_1, D), (T_2, D), ..., (T_B, D)]
:rtype: list of float ndarray
:return: list of target token id sequences [(L_1), (L_2), ..., (L_B)]
:rtype: list of int ndarray
"""
x_feats_dict = OrderedDict() # OrderedDict[str, List[np.ndarray]]
y_feats_dict = OrderedDict() # OrderedDict[str, List[np.ndarray]]
uttid_list = [] # List[str]
for uttid, info in batch:
uttid_list.append(uttid)
if self.load_input:
# Note(kamo): This for-loop is for multiple inputs
for idx, inp in enumerate(info["input"]):
# {"input":
# [{"feat": "some/path.h5:F01_050C0101_PED_REAL",
# "filetype": "hdf5",
# "name": "input1", ...}], ...}
x = self._get_from_loader(
filepath=inp["feat"], filetype=inp.get("filetype", "mat")
)
x_feats_dict.setdefault(inp["name"], []).append(x)
# FIXME(kamo): Dirty way to load only speaker_embedding
elif self.mode == "tts" and self.use_speaker_embedding:
for idx, inp in enumerate(info["input"]):
if idx != 1 and len(info["input"]) > 1:
x = None
else:
x = self._get_from_loader(
filepath=inp["feat"], filetype=inp.get("filetype", "mat")
)
x_feats_dict.setdefault(inp["name"], []).append(x)
if self.load_output:
if self.mode == "mt":
x = np.fromiter(
map(int, info["output"][1]["tokenid"].split()), dtype=np.int64
)
x_feats_dict.setdefault(info["output"][1]["name"], []).append(x)
for idx, inp in enumerate(info["output"]):
if "tokenid" in inp:
# ======= Legacy format for output =======
# {"output": [{"tokenid": "1 2 3 4"}])
x = np.fromiter(
map(int, inp["tokenid"].split()), dtype=np.int64
)
else:
# ======= New format =======
# {"input":
# [{"feat": "some/path.h5:F01_050C0101_PED_REAL",
# "filetype": "hdf5",
# "name": "target1", ...}], ...}
x = self._get_from_loader(
filepath=inp["feat"], filetype=inp.get("filetype", "mat")
)
y_feats_dict.setdefault(inp["name"], []).append(x)
if self.mode == "asr":
return_batch, uttid_list = self._create_batch_asr(
x_feats_dict, y_feats_dict, uttid_list
)
elif self.mode == "tts":
_, info = batch[0]
eos = int(info["output"][0]["shape"][1]) - 1
return_batch, uttid_list = self._create_batch_tts(
x_feats_dict, y_feats_dict, uttid_list, eos
)
elif self.mode == "mt":
return_batch, uttid_list = self._create_batch_mt(
x_feats_dict, y_feats_dict, uttid_list
)
elif self.mode == "vc":
return_batch, uttid_list = self._create_batch_vc(
x_feats_dict, y_feats_dict, uttid_list
)
else:
raise NotImplementedError(self.mode)
if self.preprocessing is not None:
# Apply pre-processing all input features
for x_name in return_batch.keys():
if x_name.startswith("input"):
return_batch[x_name] = self.preprocessing(
return_batch[x_name], uttid_list, **self.preprocess_args
)
if return_uttid:
return tuple(return_batch.values()), uttid_list
# Doesn't return the names now.
return tuple(return_batch.values())
def _create_batch_asr(self, x_feats_dict, y_feats_dict, uttid_list):
"""Create a OrderedDict for the mini-batch
:param OrderedDict x_feats_dict:
e.g. {"input1": [ndarray, ndarray, ...],
"input2": [ndarray, ndarray, ...]}
:param OrderedDict y_feats_dict:
e.g. {"target1": [ndarray, ndarray, ...],
"target2": [ndarray, ndarray, ...]}
:param: List[str] uttid_list:
Give uttid_list to sort in the same order as the mini-batch
:return: batch, uttid_list
:rtype: Tuple[OrderedDict, List[str]]
"""
# handle single-input and multi-input (paralell) asr mode
xs = list(x_feats_dict.values())
if self.load_output:
ys = list(y_feats_dict.values())
assert len(xs[0]) == len(ys[0]), (len(xs[0]), len(ys[0]))
# get index of non-zero length samples
nonzero_idx = list(filter(lambda i: len(ys[0][i]) > 0, range(len(ys[0]))))
for n in range(1, len(y_feats_dict)):
nonzero_idx = filter(lambda i: len(ys[n][i]) > 0, nonzero_idx)
else:
# Note(kamo): Be careful not to make nonzero_idx to a generator
nonzero_idx = list(range(len(xs[0])))
if self.sort_in_input_length:
# sort in input lengths based on the first input
nonzero_sorted_idx = sorted(nonzero_idx, key=lambda i: -len(xs[0][i]))
else:
nonzero_sorted_idx = nonzero_idx
if len(nonzero_sorted_idx) != len(xs[0]):
logging.warning(
"Target sequences include empty tokenid (batch {} -> {}).".format(
len(xs[0]), len(nonzero_sorted_idx)
)
)
# remove zero-length samples
xs = [[x[i] for i in nonzero_sorted_idx] for x in xs]
uttid_list = [uttid_list[i] for i in nonzero_sorted_idx]
x_names = list(x_feats_dict.keys())
if self.load_output:
ys = [[y[i] for i in nonzero_sorted_idx] for y in ys]
y_names = list(y_feats_dict.keys())
# Keeping x_name and y_name, e.g. input1, for future extension
return_batch = OrderedDict(
[
*[(x_name, x) for x_name, x in zip(x_names, xs)],
*[(y_name, y) for y_name, y in zip(y_names, ys)],
]
)
else:
return_batch = OrderedDict([(x_name, x) for x_name, x in zip(x_names, xs)])
return return_batch, uttid_list
def _create_batch_mt(self, x_feats_dict, y_feats_dict, uttid_list):
"""Create a OrderedDict for the mini-batch
:param OrderedDict x_feats_dict:
:param OrderedDict y_feats_dict:
:return: batch, uttid_list
:rtype: Tuple[OrderedDict, List[str]]
"""
# Create a list from the first item
xs = list(x_feats_dict.values())[0]
if self.load_output:
ys = list(y_feats_dict.values())[0]
assert len(xs) == len(ys), (len(xs), len(ys))
# get index of non-zero length samples
nonzero_idx = filter(lambda i: len(ys[i]) > 0, range(len(ys)))
else:
nonzero_idx = range(len(xs))
if self.sort_in_input_length:
# sort in input lengths
nonzero_sorted_idx = sorted(nonzero_idx, key=lambda i: -len(xs[i]))
else:
nonzero_sorted_idx = nonzero_idx
if len(nonzero_sorted_idx) != len(xs):
logging.warning(
"Target sequences include empty tokenid (batch {} -> {}).".format(
len(xs), len(nonzero_sorted_idx)
)
)
# remove zero-length samples
xs = [xs[i] for i in nonzero_sorted_idx]
uttid_list = [uttid_list[i] for i in nonzero_sorted_idx]
x_name = list(x_feats_dict.keys())[0]
if self.load_output:
ys = [ys[i] for i in nonzero_sorted_idx]
y_name = list(y_feats_dict.keys())[0]
return_batch = OrderedDict([(x_name, xs), (y_name, ys)])
else:
return_batch = OrderedDict([(x_name, xs)])
return return_batch, uttid_list
def _create_batch_tts(self, x_feats_dict, y_feats_dict, uttid_list, eos):
"""Create a OrderedDict for the mini-batch
:param OrderedDict x_feats_dict:
e.g. {"input1": [ndarray, ndarray, ...],
"input2": [ndarray, ndarray, ...]}
:param OrderedDict y_feats_dict:
e.g. {"target1": [ndarray, ndarray, ...],
"target2": [ndarray, ndarray, ...]}
:param: List[str] uttid_list:
:param int eos:
:return: batch, uttid_list
:rtype: Tuple[OrderedDict, List[str]]
"""
# Use the output values as the input feats for tts mode
xs = list(y_feats_dict.values())[0]
# get index of non-zero length samples
nonzero_idx = list(filter(lambda i: len(xs[i]) > 0, range(len(xs))))
# sort in input lengths
if self.sort_in_input_length:
# sort in input lengths
nonzero_sorted_idx = sorted(nonzero_idx, key=lambda i: -len(xs[i]))
else:
nonzero_sorted_idx = nonzero_idx
# remove zero-length samples
xs = [xs[i] for i in nonzero_sorted_idx]
uttid_list = [uttid_list[i] for i in nonzero_sorted_idx]
# Added eos into input sequence
xs = [np.append(x, eos) for x in xs]
if self.load_input:
ys = list(x_feats_dict.values())[0]
assert len(xs) == len(ys), (len(xs), len(ys))
ys = [ys[i] for i in nonzero_sorted_idx]
spembs = None
spcs = None
spembs_name = "spembs_none"
spcs_name = "spcs_none"
if self.use_second_target:
spcs = list(x_feats_dict.values())[1]
spcs = [spcs[i] for i in nonzero_sorted_idx]
spcs_name = list(x_feats_dict.keys())[1]
if self.use_speaker_embedding:
spembs = list(x_feats_dict.values())[1]
spembs = [spembs[i] for i in nonzero_sorted_idx]
spembs_name = list(x_feats_dict.keys())[1]
x_name = list(y_feats_dict.keys())[0]
y_name = list(x_feats_dict.keys())[0]
return_batch = OrderedDict(
[(x_name, xs), (y_name, ys), (spembs_name, spembs), (spcs_name, spcs)]
)
elif self.use_speaker_embedding:
if len(x_feats_dict) == 0:
raise IndexError("No speaker embedding is provided")
elif len(x_feats_dict) == 1:
spembs_idx = 0
else:
spembs_idx = 1
spembs = list(x_feats_dict.values())[spembs_idx]
spembs = [spembs[i] for i in nonzero_sorted_idx]
x_name = list(y_feats_dict.keys())[0]
spembs_name = list(x_feats_dict.keys())[spembs_idx]
return_batch = OrderedDict([(x_name, xs), (spembs_name, spembs)])
else:
x_name = list(y_feats_dict.keys())[0]
return_batch = OrderedDict([(x_name, xs)])
return return_batch, uttid_list
def _create_batch_vc(self, x_feats_dict, y_feats_dict, uttid_list):
"""Create a OrderedDict for the mini-batch
:param OrderedDict x_feats_dict:
e.g. {"input1": [ndarray, ndarray, ...],
"input2": [ndarray, ndarray, ...]}
:param OrderedDict y_feats_dict:
e.g. {"target1": [ndarray, ndarray, ...],
"target2": [ndarray, ndarray, ...]}
:param: List[str] uttid_list:
:return: batch, uttid_list
:rtype: Tuple[OrderedDict, List[str]]
"""
# Create a list from the first item
xs = list(x_feats_dict.values())[0]
# get index of non-zero length samples
nonzero_idx = list(filter(lambda i: len(xs[i]) > 0, range(len(xs))))
# sort in input lengths
if self.sort_in_input_length:
# sort in input lengths
nonzero_sorted_idx = sorted(nonzero_idx, key=lambda i: -len(xs[i]))
else:
nonzero_sorted_idx = nonzero_idx
# remove zero-length samples
xs = [xs[i] for i in nonzero_sorted_idx]
uttid_list = [uttid_list[i] for i in nonzero_sorted_idx]
if self.load_output:
ys = list(y_feats_dict.values())[0]
assert len(xs) == len(ys), (len(xs), len(ys))
ys = [ys[i] for i in nonzero_sorted_idx]
spembs = None
spcs = None
spembs_name = "spembs_none"
spcs_name = "spcs_none"
if self.use_second_target:
raise ValueError("Currently second target not supported.")
spcs = list(x_feats_dict.values())[1]
spcs = [spcs[i] for i in nonzero_sorted_idx]
spcs_name = list(x_feats_dict.keys())[1]
if self.use_speaker_embedding:
spembs = list(x_feats_dict.values())[1]
spembs = [spembs[i] for i in nonzero_sorted_idx]
spembs_name = list(x_feats_dict.keys())[1]
x_name = list(x_feats_dict.keys())[0]
y_name = list(y_feats_dict.keys())[0]
return_batch = OrderedDict(
[(x_name, xs), (y_name, ys), (spembs_name, spembs), (spcs_name, spcs)]
)
elif self.use_speaker_embedding:
if len(x_feats_dict) == 0:
raise IndexError("No speaker embedding is provided")
elif len(x_feats_dict) == 1:
spembs_idx = 0
else:
spembs_idx = 1
spembs = list(x_feats_dict.values())[spembs_idx]
spembs = [spembs[i] for i in nonzero_sorted_idx]
x_name = list(x_feats_dict.keys())[0]
spembs_name = list(x_feats_dict.keys())[spembs_idx]
return_batch = OrderedDict([(x_name, xs), (spembs_name, spembs)])
else:
x_name = list(x_feats_dict.keys())[0]
return_batch = OrderedDict([(x_name, xs)])
return return_batch, uttid_list
def _get_from_loader(self, filepath, filetype):
"""Return ndarray
In order to make the fds to be opened only at the first referring,
the loader are stored in self._loaders
>>> ndarray = loader.get_from_loader(
... 'some/path.h5:F01_050C0101_PED_REAL', filetype='hdf5')
:param: str filepath:
:param: str filetype:
:return:
:rtype: np.ndarray
"""
if filetype == "hdf5":
# e.g.
# {"input": [{"feat": "some/path.h5:F01_050C0101_PED_REAL",
# "filetype": "hdf5",
# -> filepath = "some/path.h5", key = "F01_050C0101_PED_REAL"
filepath, key = filepath.split(":", 1)
loader = self._loaders.get(filepath)
if loader is None:
# To avoid disk access, create loader only for the first time
loader = h5py.File(filepath, "r")
self._loaders[filepath] = loader
return loader[key][()]
elif filetype == "sound.hdf5":
# e.g.
# {"input": [{"feat": "some/path.h5:F01_050C0101_PED_REAL",
# "filetype": "sound.hdf5",
# -> filepath = "some/path.h5", key = "F01_050C0101_PED_REAL"
filepath, key = filepath.split(":", 1)
loader = self._loaders.get(filepath)
if loader is None:
# To avoid disk access, create loader only for the first time
loader = SoundHDF5File(filepath, "r", dtype="int16")
self._loaders[filepath] = loader
array, rate = loader[key]
return array
elif filetype == "sound":
# e.g.
# {"input": [{"feat": "some/path.wav",
# "filetype": "sound"},
# Assume PCM16
if not self.keep_all_data_on_mem:
array, _ = soundfile.read(filepath, dtype="int16")
return array
if filepath not in self._loaders:
array, _ = soundfile.read(filepath, dtype="int16")
self._loaders[filepath] = array
return self._loaders[filepath]
elif filetype == "npz":
# e.g.
# {"input": [{"feat": "some/path.npz:F01_050C0101_PED_REAL",
# "filetype": "npz",
filepath, key = filepath.split(":", 1)
loader = self._loaders.get(filepath)
if loader is None:
# To avoid disk access, create loader only for the first time
loader = np.load(filepath)
self._loaders[filepath] = loader
return loader[key]
elif filetype == "npy":
# e.g.
# {"input": [{"feat": "some/path.npy",
# "filetype": "npy"},
if not self.keep_all_data_on_mem:
return np.load(filepath)
if filepath not in self._loaders:
self._loaders[filepath] = np.load(filepath)
return self._loaders[filepath]
elif filetype in ["mat", "vec"]:
# e.g.
# {"input": [{"feat": "some/path.ark:123",
# "filetype": "mat"}]},
# In this case, "123" indicates the starting points of the matrix
# load_mat can load both matrix and vector
if not self.keep_all_data_on_mem:
return kaldiio.load_mat(filepath)
if filepath not in self._loaders:
self._loaders[filepath] = kaldiio.load_mat(filepath)
return self._loaders[filepath]
elif filetype == "scp":
# e.g.
# {"input": [{"feat": "some/path.scp:F01_050C0101_PED_REAL",
# "filetype": "scp",
filepath, key = filepath.split(":", 1)
loader = self._loaders.get(filepath)
if loader is None:
# To avoid disk access, create loader only for the first time
loader = kaldiio.load_scp(filepath)
self._loaders[filepath] = loader
return loader[key]
else:
raise NotImplementedError("Not supported: loader_type={}".format(filetype))
class SoundHDF5File(object):
"""Collecting sound files to a HDF5 file
>>> f = SoundHDF5File('a.flac.h5', mode='a')
>>> array = np.random.randint(0, 100, 100, dtype=np.int16)
>>> f['id'] = (array, 16000)
>>> array, rate = f['id']
:param: str filepath:
:param: str mode:
:param: str format: The type used when saving wav. flac, nist, htk, etc.
:param: str dtype:
"""
def __init__(self, filepath, mode="r+", format=None, dtype="int16", **kwargs):
self.filepath = filepath
self.mode = mode
self.dtype = dtype
self.file = h5py.File(filepath, mode, **kwargs)
if format is None:
# filepath = a.flac.h5 -> format = flac
second_ext = os.path.splitext(os.path.splitext(filepath)[0])[1]
format = second_ext[1:]
if format.upper() not in soundfile.available_formats():
# If not found, flac is selected
format = "flac"
# This format affects only saving
self.format = format
def __repr__(self):
return '<SoundHDF5 file "{}" (mode {}, format {}, type {})>'.format(
self.filepath, self.mode, self.format, self.dtype
)
def create_dataset(self, name, shape=None, data=None, **kwds):
f = io.BytesIO()
array, rate = data
soundfile.write(f, array, rate, format=self.format)
self.file.create_dataset(name, shape=shape, data=np.void(f.getvalue()), **kwds)
def __setitem__(self, name, data):
self.create_dataset(name, data=data)
def __getitem__(self, key):
data = self.file[key][()]
f = io.BytesIO(data.tobytes())
array, rate = soundfile.read(f, dtype=self.dtype)
return array, rate
def keys(self):
return self.file.keys()
def values(self):
for k in self.file:
yield self[k]
def items(self):
for k in self.file:
yield k, self[k]
def __iter__(self):
return iter(self.file)
def __contains__(self, item):
return item in self.file
def __len__(self, item):
return len(self.file)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.file.close()
def close(self):
self.file.close()