conex / espnet2 /bin /launch.py
tobiasc's picture
Initial commit
ad16788
raw
history blame
13.1 kB
#!/usr/bin/env python3
import argparse
import logging
import os
from pathlib import Path
import shlex
import shutil
import subprocess
import sys
import uuid
from espnet.utils.cli_utils import get_commandline_args
from espnet2.utils.types import str2bool
from espnet2.utils.types import str_or_none
def get_parser():
parser = argparse.ArgumentParser(
description="Launch distributed process with appropriate options. ",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--cmd",
help="The path of cmd script of Kaldi: run.pl. queue.pl, or slurm.pl",
default="utils/run.pl",
)
parser.add_argument(
"--log",
help="The path of log file used by cmd",
default="run.log",
)
parser.add_argument(
"--max_num_log_files",
help="The maximum number of log-files to be kept",
default=1000,
)
parser.add_argument(
"--ngpu", type=int, default=1, help="The number of GPUs per node"
)
egroup = parser.add_mutually_exclusive_group()
egroup.add_argument("--num_nodes", type=int, default=1, help="The number of nodes")
egroup.add_argument(
"--host",
type=str,
default=None,
help="Directly specify the host names. The job are submitted via SSH. "
"Multiple host names can be specified by splitting by comma. e.g. host1,host2"
" You can also the device id after the host name with ':'. e.g. "
"host1:0:2:3,host2:0:2. If the device ids are specified in this way, "
"the value of --ngpu is ignored.",
)
parser.add_argument(
"--envfile",
type=str_or_none,
default="path.sh",
help="Source the shell script before executing command. "
"This option is used when --host is specified.",
)
parser.add_argument(
"--multiprocessing_distributed",
type=str2bool,
default=True,
help="Distributed method is used when single-node mode.",
)
parser.add_argument(
"--master_port",
type=int,
default=None,
help="Specify the port number of master"
"Master is a host machine has RANK0 process.",
)
parser.add_argument(
"--master_addr",
type=str,
default=None,
help="Specify the address s of master. "
"Master is a host machine has RANK0 process.",
)
parser.add_argument(
"--init_file_prefix",
type=str,
default=".dist_init_",
help="The file name prefix for init_file, which is used for "
"'Shared-file system initialization'. "
"This option is used when --port is not specified",
)
parser.add_argument("args", type=str, nargs="+")
return parser
def main(cmd=None):
logfmt = "%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
logging.basicConfig(level=logging.INFO, format=logfmt)
logging.info(get_commandline_args())
parser = get_parser()
args = parser.parse_args(cmd)
args.cmd = shlex.split(args.cmd)
if args.host is None and shutil.which(args.cmd[0]) is None:
raise RuntimeError(
f"The first args of --cmd should be a script path. e.g. utils/run.pl: "
f"{args.cmd[0]}"
)
# Specify init_method:
# See: https://pytorch.org/docs/stable/distributed.html#initialization
if args.host is None and args.num_nodes <= 1:
# Automatically set init_method if num_node=1
init_method = None
else:
if args.master_port is None:
# Try "shared-file system initialization" if master_port is not specified
# Give random name to avoid reusing previous file
init_file = args.init_file_prefix + str(uuid.uuid4())
init_file = Path(init_file).absolute()
Path(init_file).parent.mkdir(exist_ok=True, parents=True)
init_method = ["--dist_init_method", f"file://{init_file}"]
else:
init_method = ["--dist_master_port", str(args.master_port)]
# This can be omitted if slurm mode
if args.master_addr is not None:
init_method += ["--dist_master_addr", args.master_addr]
elif args.host is not None:
init_method += [
"--dist_master_addr",
args.host.split(",")[0].split(":")[0],
]
# Log-rotation
for i in range(args.max_num_log_files - 1, -1, -1):
if i == 0:
p = Path(args.log)
pn = p.parent / (p.stem + ".1" + p.suffix)
else:
_p = Path(args.log)
p = _p.parent / (_p.stem + f".{i}" + _p.suffix)
pn = _p.parent / (_p.stem + f".{i + 1}" + _p.suffix)
if p.exists():
if i == args.max_num_log_files - 1:
p.unlink()
else:
shutil.move(p, pn)
processes = []
# Submit command via SSH
if args.host is not None:
hosts = []
ids_list = []
# e.g. args.host = "host1:0:2,host2:0:1"
for host in args.host.split(","):
# e.g host = "host1:0:2"
sps = host.split(":")
host = sps[0]
if len(sps) > 1:
ids = [int(x) for x in sps[1:]]
else:
ids = list(range(args.ngpu))
hosts.append(host)
ids_list.append(ids)
world_size = sum(max(len(x), 1) for x in ids_list)
logging.info(f"{len(hosts)}nodes with world_size={world_size} via SSH")
if args.envfile is not None:
env = f"source {args.envfile}"
else:
env = ""
if args.log != "-":
Path(args.log).parent.mkdir(parents=True, exist_ok=True)
f = Path(args.log).open("w", encoding="utf-8")
else:
# Output to stdout/stderr
f = None
rank = 0
for host, ids in zip(hosts, ids_list):
ngpu = 1 if len(ids) > 0 else 0
ids = ids if len(ids) > 0 else ["none"]
for local_rank in ids:
cmd = (
args.args
+ [
"--ngpu",
str(ngpu),
"--multiprocessing_distributed",
"false",
"--local_rank",
str(local_rank),
"--dist_rank",
str(rank),
"--dist_world_size",
str(world_size),
]
+ init_method
)
if ngpu == 0:
# Gloo supports both GPU and CPU mode.
# See: https://pytorch.org/docs/stable/distributed.html
cmd += ["--dist_backend", "gloo"]
heredoc = f"""<< EOF
set -euo pipefail
cd {os.getcwd()}
{env}
{" ".join([c if len(c) != 0 else "''" for c in cmd])}
EOF
"""
# FIXME(kamo): The process will be alive
# even if this program is stopped because we don't set -t here,
# i.e. not assigning pty,
# and the program is not killed when SSH connection is closed.
process = subprocess.Popen(
["ssh", host, "bash", heredoc],
stdout=f,
stderr=f,
)
processes.append(process)
rank += 1
# If Single node
elif args.num_nodes <= 1:
if args.ngpu > 1:
if args.multiprocessing_distributed:
# NOTE:
# If multiprocessing_distributed=true,
# -> Distributed mode, which is multi-process and Multi-GPUs.
# and TCP initializetion is used if single-node case:
# e.g. init_method="tcp://localhost:20000"
logging.info(f"single-node with {args.ngpu}gpu on distributed mode")
else:
# NOTE:
# If multiprocessing_distributed=false
# -> "DataParallel" mode, which is single-process
# and Multi-GPUs with threading.
# See:
# https://discuss.pytorch.org/t/why-torch-nn-parallel-distributeddataparallel-runs-faster-than-torch-nn-dataparallel-on-single-machine-with-multi-gpu/32977/2
logging.info(f"single-node with {args.ngpu}gpu using DataParallel")
# Using cmd as it is simply
cmd = (
args.cmd
# arguments for ${cmd}
+ ["--gpu", str(args.ngpu), args.log]
# arguments for *_train.py
+ args.args
+ [
"--ngpu",
str(args.ngpu),
"--multiprocessing_distributed",
str(args.multiprocessing_distributed),
]
)
process = subprocess.Popen(cmd)
processes.append(process)
elif Path(args.cmd[0]).name == "run.pl":
raise RuntimeError("run.pl doesn't support submitting to the other nodes.")
elif Path(args.cmd[0]).name == "ssh.pl":
raise RuntimeError("Use --host option instead of ssh.pl")
# If Slurm
elif Path(args.cmd[0]).name == "slurm.pl":
logging.info(f"{args.num_nodes}nodes and {args.ngpu}gpu-per-node using srun")
cmd = (
args.cmd
# arguments for ${cmd}
+ [
"--gpu",
str(args.ngpu),
"--num_threads",
str(max(args.ngpu, 1)),
"--num_nodes",
str(args.num_nodes),
args.log,
"srun",
# Inherit all enviroment variable from parent process
"--export=ALL",
]
# arguments for *_train.py
+ args.args
+ [
"--ngpu",
str(args.ngpu),
"--multiprocessing_distributed",
"true",
"--dist_launcher",
"slurm",
]
+ init_method
)
if args.ngpu == 0:
# Gloo supports both GPU and CPU mode.
# See: https://pytorch.org/docs/stable/distributed.html
cmd += ["--dist_backend", "gloo"]
process = subprocess.Popen(cmd)
processes.append(process)
else:
# This pattern can also works with Slurm.
logging.info(f"{args.num_nodes}nodes and {args.ngpu}gpu-per-node using mpirun")
cmd = (
args.cmd
# arguments for ${cmd}
+ [
"--gpu",
str(args.ngpu),
"--num_threads",
str(max(args.ngpu, 1)),
# Make sure scheduler setting, i.e. conf/queue.conf
# so that --num_nodes requires 1process-per-node
"--num_nodes",
str(args.num_nodes),
args.log,
"mpirun",
# -np option can be omitted with Torque/PBS
"-np",
str(args.num_nodes),
]
# arguments for *_train.py
+ args.args
+ [
"--ngpu",
str(args.ngpu),
"--multiprocessing_distributed",
"true",
"--dist_launcher",
"mpi",
]
+ init_method
)
if args.ngpu == 0:
# Gloo supports both GPU and CPU mode.
# See: https://pytorch.org/docs/stable/distributed.html
cmd += ["--dist_backend", "gloo"]
process = subprocess.Popen(cmd)
processes.append(process)
logging.info(f"log file: {args.log}")
failed = False
while any(p.returncode is None for p in processes):
for process in processes:
# If any process is failed, try to kill the other processes too
if failed and process.returncode is not None:
process.kill()
else:
try:
process.wait(0.5)
except subprocess.TimeoutExpired:
pass
if process.returncode is not None and process.returncode != 0:
failed = True
for process in processes:
if process.returncode != 0:
print(
subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd),
file=sys.stderr,
)
p = Path(args.log)
if p.exists():
with p.open() as f:
lines = list(f)
raise RuntimeError(
f"\n################### The last 1000 lines of {args.log} "
f"###################\n" + "".join(lines[-1000:])
)
else:
raise RuntimeError
if __name__ == "__main__":
main()