|
|
|
|
|
|
|
|
|
|
|
|
|
"""Common functions for ST and MT.""" |
|
|
|
import nltk |
|
import numpy as np |
|
|
|
|
|
class ErrorCalculator(object): |
|
"""Calculate BLEU for ST and MT models during training. |
|
|
|
:param y_hats: numpy array with predicted text |
|
:param y_pads: numpy array with true (target) text |
|
:param char_list: vocabulary list |
|
:param sym_space: space symbol |
|
:param sym_pad: pad symbol |
|
:param report_bleu: report BLUE score if True |
|
""" |
|
|
|
def __init__(self, char_list, sym_space, sym_pad, report_bleu=False): |
|
"""Construct an ErrorCalculator object.""" |
|
super(ErrorCalculator, self).__init__() |
|
self.char_list = char_list |
|
self.space = sym_space |
|
self.pad = sym_pad |
|
self.report_bleu = report_bleu |
|
if self.space in self.char_list: |
|
self.idx_space = self.char_list.index(self.space) |
|
else: |
|
self.idx_space = None |
|
|
|
def __call__(self, ys_hat, ys_pad): |
|
"""Calculate corpus-level BLEU score. |
|
|
|
:param torch.Tensor ys_hat: prediction (batch, seqlen) |
|
:param torch.Tensor ys_pad: reference (batch, seqlen) |
|
:return: corpus-level BLEU score in a mini-batch |
|
:rtype float |
|
""" |
|
bleu = None |
|
if not self.report_bleu: |
|
return bleu |
|
|
|
bleu = self.calculate_corpus_bleu(ys_hat, ys_pad) |
|
return bleu |
|
|
|
def calculate_corpus_bleu(self, ys_hat, ys_pad): |
|
"""Calculate corpus-level BLEU score in a mini-batch. |
|
|
|
:param torch.Tensor seqs_hat: prediction (batch, seqlen) |
|
:param torch.Tensor seqs_true: reference (batch, seqlen) |
|
:return: corpus-level BLEU score |
|
:rtype float |
|
""" |
|
seqs_hat, seqs_true = [], [] |
|
for i, y_hat in enumerate(ys_hat): |
|
y_true = ys_pad[i] |
|
eos_true = np.where(y_true == -1)[0] |
|
ymax = eos_true[0] if len(eos_true) > 0 else len(y_true) |
|
|
|
|
|
seq_hat = [self.char_list[int(idx)] for idx in y_hat[:ymax]] |
|
seq_true = [self.char_list[int(idx)] for idx in y_true if int(idx) != -1] |
|
seq_hat_text = "".join(seq_hat).replace(self.space, " ") |
|
seq_hat_text = seq_hat_text.replace(self.pad, "") |
|
seq_true_text = "".join(seq_true).replace(self.space, " ") |
|
seqs_hat.append(seq_hat_text) |
|
seqs_true.append(seq_true_text) |
|
bleu = nltk.bleu_score.corpus_bleu([[ref] for ref in seqs_true], seqs_hat) |
|
return bleu * 100 |
|
|