|
|
|
|
|
|
|
|
|
|
|
"""Voice conversion model training script.""" |
|
|
|
import logging |
|
import os |
|
import random |
|
import subprocess |
|
import sys |
|
|
|
import configargparse |
|
import numpy as np |
|
|
|
from espnet import __version__ |
|
from espnet.nets.tts_interface import TTSInterface |
|
from espnet.utils.cli_utils import strtobool |
|
from espnet.utils.training.batchfy import BATCH_COUNT_CHOICES |
|
|
|
|
|
|
|
def get_parser(): |
|
"""Get parser of training arguments.""" |
|
parser = configargparse.ArgumentParser( |
|
description="Train a new voice conversion (VC) model on one CPU, " |
|
"one or multiple GPUs", |
|
config_file_parser_class=configargparse.YAMLConfigFileParser, |
|
formatter_class=configargparse.ArgumentDefaultsHelpFormatter, |
|
) |
|
|
|
|
|
parser.add("--config", is_config_file=True, help="config file path") |
|
parser.add( |
|
"--config2", |
|
is_config_file=True, |
|
help="second config file path that overwrites the settings in `--config`.", |
|
) |
|
parser.add( |
|
"--config3", |
|
is_config_file=True, |
|
help="third config file path that overwrites the settings " |
|
"in `--config` and `--config2`.", |
|
) |
|
|
|
parser.add_argument( |
|
"--ngpu", |
|
default=None, |
|
type=int, |
|
help="Number of GPUs. If not given, use all visible devices", |
|
) |
|
parser.add_argument( |
|
"--backend", |
|
default="pytorch", |
|
type=str, |
|
choices=["chainer", "pytorch"], |
|
help="Backend library", |
|
) |
|
parser.add_argument("--outdir", type=str, required=True, help="Output directory") |
|
parser.add_argument("--debugmode", default=1, type=int, help="Debugmode") |
|
parser.add_argument("--seed", default=1, type=int, help="Random seed") |
|
parser.add_argument( |
|
"--resume", |
|
"-r", |
|
default="", |
|
type=str, |
|
nargs="?", |
|
help="Resume the training from snapshot", |
|
) |
|
parser.add_argument( |
|
"--minibatches", |
|
"-N", |
|
type=int, |
|
default="-1", |
|
help="Process only N minibatches (for debug)", |
|
) |
|
parser.add_argument("--verbose", "-V", default=0, type=int, help="Verbose option") |
|
parser.add_argument( |
|
"--tensorboard-dir", |
|
default=None, |
|
type=str, |
|
nargs="?", |
|
help="Tensorboard log directory path", |
|
) |
|
parser.add_argument( |
|
"--eval-interval-epochs", |
|
default=100, |
|
type=int, |
|
help="Evaluation interval epochs", |
|
) |
|
parser.add_argument( |
|
"--save-interval-epochs", default=1, type=int, help="Save interval epochs" |
|
) |
|
parser.add_argument( |
|
"--report-interval-iters", |
|
default=10, |
|
type=int, |
|
help="Report interval iterations", |
|
) |
|
|
|
parser.add_argument("--srcspk", type=str, help="Source speaker") |
|
parser.add_argument("--trgspk", type=str, help="Target speaker") |
|
parser.add_argument( |
|
"--train-json", type=str, required=True, help="Filename of training json" |
|
) |
|
parser.add_argument( |
|
"--valid-json", type=str, required=True, help="Filename of validation json" |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--model-module", |
|
type=str, |
|
default="espnet.nets.pytorch_backend.e2e_tts_tacotron2:Tacotron2", |
|
help="model defined module", |
|
) |
|
|
|
parser.add_argument( |
|
"--sortagrad", |
|
default=0, |
|
type=int, |
|
nargs="?", |
|
help="How many epochs to use sortagrad for. 0 = deactivated, -1 = all epochs", |
|
) |
|
parser.add_argument( |
|
"--batch-sort-key", |
|
default="shuffle", |
|
type=str, |
|
choices=["shuffle", "output", "input"], |
|
nargs="?", |
|
help='Batch sorting key. "shuffle" only work with --batch-count "seq".', |
|
) |
|
parser.add_argument( |
|
"--batch-count", |
|
default="auto", |
|
choices=BATCH_COUNT_CHOICES, |
|
help="How to count batch_size. " |
|
"The default (auto) will find how to count by args.", |
|
) |
|
parser.add_argument( |
|
"--batch-size", |
|
"--batch-seqs", |
|
"-b", |
|
default=0, |
|
type=int, |
|
help="Maximum seqs in a minibatch (0 to disable)", |
|
) |
|
parser.add_argument( |
|
"--batch-bins", |
|
default=0, |
|
type=int, |
|
help="Maximum bins in a minibatch (0 to disable)", |
|
) |
|
parser.add_argument( |
|
"--batch-frames-in", |
|
default=0, |
|
type=int, |
|
help="Maximum input frames in a minibatch (0 to disable)", |
|
) |
|
parser.add_argument( |
|
"--batch-frames-out", |
|
default=0, |
|
type=int, |
|
help="Maximum output frames in a minibatch (0 to disable)", |
|
) |
|
parser.add_argument( |
|
"--batch-frames-inout", |
|
default=0, |
|
type=int, |
|
help="Maximum input+output frames in a minibatch (0 to disable)", |
|
) |
|
parser.add_argument( |
|
"--maxlen-in", |
|
"--batch-seq-maxlen-in", |
|
default=100, |
|
type=int, |
|
metavar="ML", |
|
help="When --batch-count=seq, " |
|
"batch size is reduced if the input sequence length > ML.", |
|
) |
|
parser.add_argument( |
|
"--maxlen-out", |
|
"--batch-seq-maxlen-out", |
|
default=200, |
|
type=int, |
|
metavar="ML", |
|
help="When --batch-count=seq, " |
|
"batch size is reduced if the output sequence length > ML", |
|
) |
|
parser.add_argument( |
|
"--num-iter-processes", |
|
default=0, |
|
type=int, |
|
help="Number of processes of iterator", |
|
) |
|
parser.add_argument( |
|
"--preprocess-conf", |
|
type=str, |
|
default=None, |
|
help="The configuration file for the pre-processing", |
|
) |
|
parser.add_argument( |
|
"--use-speaker-embedding", |
|
default=False, |
|
type=strtobool, |
|
help="Whether to use speaker embedding", |
|
) |
|
parser.add_argument( |
|
"--use-second-target", |
|
default=False, |
|
type=strtobool, |
|
help="Whether to use second target", |
|
) |
|
|
|
parser.add_argument( |
|
"--opt", |
|
default="adam", |
|
type=str, |
|
choices=["adam", "noam", "lamb"], |
|
help="Optimizer", |
|
) |
|
parser.add_argument( |
|
"--accum-grad", default=1, type=int, help="Number of gradient accumuration" |
|
) |
|
parser.add_argument( |
|
"--lr", default=1e-3, type=float, help="Learning rate for optimizer" |
|
) |
|
parser.add_argument("--eps", default=1e-6, type=float, help="Epsilon for optimizer") |
|
parser.add_argument( |
|
"--weight-decay", |
|
default=1e-6, |
|
type=float, |
|
help="Weight decay coefficient for optimizer", |
|
) |
|
parser.add_argument( |
|
"--epochs", "-e", default=30, type=int, help="Number of maximum epochs" |
|
) |
|
parser.add_argument( |
|
"--early-stop-criterion", |
|
default="validation/main/loss", |
|
type=str, |
|
nargs="?", |
|
help="Value to monitor to trigger an early stopping of the training", |
|
) |
|
parser.add_argument( |
|
"--patience", |
|
default=3, |
|
type=int, |
|
nargs="?", |
|
help="Number of epochs to wait without improvement " |
|
"before stopping the training", |
|
) |
|
parser.add_argument( |
|
"--grad-clip", default=1, type=float, help="Gradient norm threshold to clip" |
|
) |
|
parser.add_argument( |
|
"--num-save-attention", |
|
default=5, |
|
type=int, |
|
help="Number of samples of attention to be saved", |
|
) |
|
parser.add_argument( |
|
"--keep-all-data-on-mem", |
|
default=False, |
|
type=strtobool, |
|
help="Whether to keep all data on memory", |
|
) |
|
|
|
parser.add_argument( |
|
"--enc-init", |
|
default=None, |
|
type=str, |
|
help="Pre-trained model path to initialize encoder.", |
|
) |
|
parser.add_argument( |
|
"--enc-init-mods", |
|
default="enc.", |
|
type=lambda s: [str(mod) for mod in s.split(",") if s != ""], |
|
help="List of encoder modules to initialize, separated by a comma.", |
|
) |
|
parser.add_argument( |
|
"--dec-init", |
|
default=None, |
|
type=str, |
|
help="Pre-trained model path to initialize decoder.", |
|
) |
|
parser.add_argument( |
|
"--dec-init-mods", |
|
default="dec.", |
|
type=lambda s: [str(mod) for mod in s.split(",") if s != ""], |
|
help="List of decoder modules to initialize, separated by a comma.", |
|
) |
|
parser.add_argument( |
|
"--freeze-mods", |
|
default=None, |
|
type=lambda s: [str(mod) for mod in s.split(",") if s != ""], |
|
help="List of modules to freeze (not to train), separated by a comma.", |
|
) |
|
|
|
return parser |
|
|
|
|
|
def main(cmd_args): |
|
"""Run training.""" |
|
parser = get_parser() |
|
args, _ = parser.parse_known_args(cmd_args) |
|
|
|
from espnet.utils.dynamic_import import dynamic_import |
|
|
|
model_class = dynamic_import(args.model_module) |
|
assert issubclass(model_class, TTSInterface) |
|
model_class.add_arguments(parser) |
|
args = parser.parse_args(cmd_args) |
|
|
|
|
|
args.version = __version__ |
|
|
|
|
|
if args.verbose > 0: |
|
logging.basicConfig( |
|
level=logging.INFO, |
|
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", |
|
) |
|
else: |
|
logging.basicConfig( |
|
level=logging.WARN, |
|
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", |
|
) |
|
logging.warning("Skip DEBUG/INFO messages") |
|
|
|
|
|
|
|
|
|
|
|
if args.ngpu is None: |
|
cvd = os.environ.get("CUDA_VISIBLE_DEVICES") |
|
if cvd is not None: |
|
ngpu = len(cvd.split(",")) |
|
else: |
|
logging.warning("CUDA_VISIBLE_DEVICES is not set.") |
|
try: |
|
p = subprocess.run( |
|
["nvidia-smi", "-L"], stdout=subprocess.PIPE, stderr=subprocess.PIPE |
|
) |
|
except (subprocess.CalledProcessError, FileNotFoundError): |
|
ngpu = 0 |
|
else: |
|
ngpu = len(p.stderr.decode().split("\n")) - 1 |
|
else: |
|
ngpu = args.ngpu |
|
logging.info(f"ngpu: {ngpu}") |
|
|
|
|
|
logging.info("random seed = %d" % args.seed) |
|
random.seed(args.seed) |
|
np.random.seed(args.seed) |
|
|
|
if args.backend == "pytorch": |
|
from espnet.vc.pytorch_backend.vc import train |
|
|
|
train(args) |
|
else: |
|
raise NotImplementedError("Only pytorch is supported.") |
|
|
|
|
|
if __name__ == "__main__": |
|
main(sys.argv[1:]) |
|
|