Spaces:
Running
Running
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
def get_values_per_byte(base: int): | |
values_per_byte = 1 | |
tmp = 255 // base | |
while tmp > 0: | |
values_per_byte += 1 | |
tmp = tmp // base | |
return values_per_byte | |
def bytes_to_base(m: bytes, base: int) -> list[int]: | |
values_per_byte = get_values_per_byte(base) | |
values = [] | |
for b in m: | |
tmp = [] | |
for i in range(values_per_byte): | |
tmp.append(b % base) | |
b = b // base | |
values.extend(tmp[::-1]) | |
return values | |
def base_to_bytes(values: list[int], base: int) -> bytes: | |
values_per_byte = get_values_per_byte(base) | |
arr = bytearray() | |
i = 0 | |
while i < len(values): | |
tmp = 0 | |
for _ in range(values_per_byte): | |
tmp = tmp * base + values[i] | |
i += 1 | |
if i >= len(values): | |
break | |
arr.append(tmp) | |
return bytes(arr) | |
def load_model(name: str, device: torch.device): | |
model = AutoModelForCausalLM.from_pretrained(name) | |
model.to(device) | |
model.eval() | |
tokenizer = AutoTokenizer.from_pretrained(name) | |
return model, tokenizer | |
def static_init(cls): | |
if getattr(cls, "__static_init__", None): | |
cls.__static_init__() | |
return cls | |