Spaces:
Running
Running
# https://github.com/bayartsogt-ya/whisper-multiple-hf-datasets | |
from copy import deepcopy | |
import torch | |
from transformers import WhisperForConditionalGeneration | |
WHISPER_MAPPING = { | |
"layers": "blocks", | |
"fc1": "mlp.0", | |
"fc2": "mlp.2", | |
"final_layer_norm": "mlp_ln", | |
"layers": "blocks", | |
".self_attn.q_proj": ".attn.query", | |
".self_attn.k_proj": ".attn.key", | |
".self_attn.v_proj": ".attn.value", | |
".self_attn_layer_norm": ".attn_ln", | |
".self_attn.out_proj": ".attn.out", | |
".encoder_attn.q_proj": ".cross_attn.query", | |
".encoder_attn.k_proj": ".cross_attn.key", | |
".encoder_attn.v_proj": ".cross_attn.value", | |
".encoder_attn_layer_norm": ".cross_attn_ln", | |
".encoder_attn.out_proj": ".cross_attn.out", | |
"decoder.layer_norm.": "decoder.ln.", | |
"encoder.layer_norm.": "encoder.ln_post.", | |
"embed_tokens": "token_embedding", | |
"encoder.embed_positions.weight": "encoder.positional_embedding", | |
"decoder.embed_positions.weight": "decoder.positional_embedding", | |
"layer_norm": "ln_post", | |
} | |
def rename_keys(s_dict): | |
keys = list(s_dict.keys()) | |
for key in keys: | |
new_key = key | |
for k, v in WHISPER_MAPPING.items(): | |
if k in key: | |
new_key = new_key.replace(k, v) | |
print(f"{key} -> {new_key}") | |
s_dict[new_key] = s_dict.pop(key) | |
return s_dict | |
def convert_hf_whisper(hf_model_name_or_path: str, whisper_state_path: str): | |
transformer_model = WhisperForConditionalGeneration.from_pretrained(hf_model_name_or_path) | |
config = transformer_model.config | |
# first build dims | |
dims = { | |
'n_mels': config.num_mel_bins, | |
'n_vocab': config.vocab_size, | |
'n_audio_ctx': config.max_source_positions, | |
'n_audio_state': config.d_model, | |
'n_audio_head': config.encoder_attention_heads, | |
'n_audio_layer': config.encoder_layers, | |
'n_text_ctx': config.max_target_positions, | |
'n_text_state': config.d_model, | |
'n_text_head': config.decoder_attention_heads, | |
'n_text_layer': config.decoder_layers | |
} | |
state_dict = deepcopy(transformer_model.model.state_dict()) | |
state_dict = rename_keys(state_dict) | |
torch.save({"dims": dims, "model_state_dict": state_dict}, whisper_state_path) |