|
"""This module implements an abstract base class (ABC) 'BaseDataset' for datasets. |
|
|
|
It also includes common transformation functions (e.g., get_transform, __scale_width), which can be later used in subclasses. |
|
""" |
|
import random |
|
import numpy as np |
|
import torch.utils.data as data |
|
from PIL import Image |
|
import torchvision.transforms as transforms |
|
from abc import ABC, abstractmethod |
|
|
|
|
|
class BaseDataset(data.Dataset, ABC): |
|
"""This class is an abstract base class (ABC) for datasets. |
|
|
|
To create a subclass, you need to implement the following four functions: |
|
-- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt). |
|
-- <__len__>: return the size of dataset. |
|
-- <__getitem__>: get a data point. |
|
-- <modify_commandline_options>: (optionally) add dataset-specific options and set default options. |
|
""" |
|
|
|
def __init__(self, opt): |
|
"""Initialize the class; save the options in the class |
|
|
|
Parameters: |
|
opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions |
|
""" |
|
self.opt = opt |
|
|
|
self.current_epoch = 0 |
|
|
|
@staticmethod |
|
def modify_commandline_options(parser, is_train): |
|
"""Add new dataset-specific options, and rewrite default values for existing options. |
|
|
|
Parameters: |
|
parser -- original option parser |
|
is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. |
|
|
|
Returns: |
|
the modified parser. |
|
""" |
|
return parser |
|
|
|
@abstractmethod |
|
def __len__(self): |
|
"""Return the total number of images in the dataset.""" |
|
return 0 |
|
|
|
@abstractmethod |
|
def __getitem__(self, index): |
|
"""Return a data point and its metadata information. |
|
|
|
Parameters: |
|
index - - a random integer for data indexing |
|
|
|
Returns: |
|
a dictionary of data with their names. It ususally contains the data itself and its metadata information. |
|
""" |
|
pass |
|
|
|
|
|
def get_transform(grayscale=False): |
|
transform_list = [] |
|
if grayscale: |
|
transform_list.append(transforms.Grayscale(1)) |
|
transform_list += [transforms.ToTensor()] |
|
return transforms.Compose(transform_list) |
|
|
|
def get_affine_mat(opt, size): |
|
shift_x, shift_y, scale, rot_angle, flip = 0., 0., 1., 0., False |
|
w, h = size |
|
|
|
if 'shift' in opt.preprocess: |
|
shift_pixs = int(opt.shift_pixs) |
|
shift_x = random.randint(-shift_pixs, shift_pixs) |
|
shift_y = random.randint(-shift_pixs, shift_pixs) |
|
if 'scale' in opt.preprocess: |
|
scale = 1 + opt.scale_delta * (2 * random.random() - 1) |
|
if 'rot' in opt.preprocess: |
|
rot_angle = opt.rot_angle * (2 * random.random() - 1) |
|
rot_rad = -rot_angle * np.pi/180 |
|
if 'flip' in opt.preprocess: |
|
flip = random.random() > 0.5 |
|
|
|
shift_to_origin = np.array([1, 0, -w//2, 0, 1, -h//2, 0, 0, 1]).reshape([3, 3]) |
|
flip_mat = np.array([-1 if flip else 1, 0, 0, 0, 1, 0, 0, 0, 1]).reshape([3, 3]) |
|
shift_mat = np.array([1, 0, shift_x, 0, 1, shift_y, 0, 0, 1]).reshape([3, 3]) |
|
rot_mat = np.array([np.cos(rot_rad), np.sin(rot_rad), 0, -np.sin(rot_rad), np.cos(rot_rad), 0, 0, 0, 1]).reshape([3, 3]) |
|
scale_mat = np.array([scale, 0, 0, 0, scale, 0, 0, 0, 1]).reshape([3, 3]) |
|
shift_to_center = np.array([1, 0, w//2, 0, 1, h//2, 0, 0, 1]).reshape([3, 3]) |
|
|
|
affine = shift_to_center @ scale_mat @ rot_mat @ shift_mat @ flip_mat @ shift_to_origin |
|
affine_inv = np.linalg.inv(affine) |
|
return affine, affine_inv, flip |
|
|
|
def apply_img_affine(img, affine_inv, method=Image.BICUBIC): |
|
return img.transform(img.size, Image.AFFINE, data=affine_inv.flatten()[:6], resample=Image.BICUBIC) |
|
|
|
def apply_lm_affine(landmark, affine, flip, size): |
|
_, h = size |
|
lm = landmark.copy() |
|
lm[:, 1] = h - 1 - lm[:, 1] |
|
lm = np.concatenate((lm, np.ones([lm.shape[0], 1])), -1) |
|
lm = lm @ np.transpose(affine) |
|
lm[:, :2] = lm[:, :2] / lm[:, 2:] |
|
lm = lm[:, :2] |
|
lm[:, 1] = h - 1 - lm[:, 1] |
|
if flip: |
|
lm_ = lm.copy() |
|
lm_[:17] = lm[16::-1] |
|
lm_[17:22] = lm[26:21:-1] |
|
lm_[22:27] = lm[21:16:-1] |
|
lm_[31:36] = lm[35:30:-1] |
|
lm_[36:40] = lm[45:41:-1] |
|
lm_[40:42] = lm[47:45:-1] |
|
lm_[42:46] = lm[39:35:-1] |
|
lm_[46:48] = lm[41:39:-1] |
|
lm_[48:55] = lm[54:47:-1] |
|
lm_[55:60] = lm[59:54:-1] |
|
lm_[60:65] = lm[64:59:-1] |
|
lm_[65:68] = lm[67:64:-1] |
|
lm = lm_ |
|
return lm |
|
|