|
import numpy as np |
|
import cv2, os, sys,torch |
|
from tqdm import tqdm |
|
from PIL import Image |
|
|
|
|
|
from src.face3d.util.preprocess import align_img |
|
from src.face3d.util.load_mats import load_lm3d |
|
from src.face3d.models import networks |
|
from src.face3d.extract_kp_videos import KeypointExtractor |
|
|
|
from scipy.io import loadmat, savemat |
|
from src.utils.croper import Croper |
|
|
|
import warnings |
|
warnings.filterwarnings("ignore") |
|
|
|
def split_coeff(coeffs): |
|
""" |
|
Return: |
|
coeffs_dict -- a dict of torch.tensors |
|
|
|
Parameters: |
|
coeffs -- torch.tensor, size (B, 256) |
|
""" |
|
id_coeffs = coeffs[:, :80] |
|
exp_coeffs = coeffs[:, 80: 144] |
|
tex_coeffs = coeffs[:, 144: 224] |
|
angles = coeffs[:, 224: 227] |
|
gammas = coeffs[:, 227: 254] |
|
translations = coeffs[:, 254:] |
|
return { |
|
'id': id_coeffs, |
|
'exp': exp_coeffs, |
|
'tex': tex_coeffs, |
|
'angle': angles, |
|
'gamma': gammas, |
|
'trans': translations |
|
} |
|
|
|
|
|
class CropAndExtract(): |
|
def __init__(self, path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device): |
|
|
|
self.croper = Croper(path_of_lm_croper) |
|
self.kp_extractor = KeypointExtractor(device) |
|
self.net_recon = networks.define_net_recon(net_recon='resnet50', use_last_fc=False, init_path='').to(device) |
|
checkpoint = torch.load(path_of_net_recon_model, map_location=torch.device(device)) |
|
self.net_recon.load_state_dict(checkpoint['net_recon']) |
|
self.net_recon.eval() |
|
self.lm3d_std = load_lm3d(dir_of_BFM_fitting) |
|
self.device = device |
|
|
|
def generate(self, input_path, save_dir): |
|
|
|
pic_size = 256 |
|
pic_name = os.path.splitext(os.path.split(input_path)[-1])[0] |
|
|
|
landmarks_path = os.path.join(save_dir, pic_name+'_landmarks.txt') |
|
coeff_path = os.path.join(save_dir, pic_name+'.mat') |
|
png_path = os.path.join(save_dir, pic_name+'.png') |
|
|
|
|
|
if not os.path.isfile(input_path): |
|
raise ValueError('input_path must be a valid path to video/image file') |
|
elif input_path.split('.')[1] in ['jpg', 'png', 'jpeg']: |
|
|
|
full_frames = [cv2.imread(input_path)] |
|
fps = 25 |
|
else: |
|
|
|
video_stream = cv2.VideoCapture(input_path) |
|
fps = video_stream.get(cv2.CAP_PROP_FPS) |
|
full_frames = [] |
|
while 1: |
|
still_reading, frame = video_stream.read() |
|
if not still_reading: |
|
video_stream.release() |
|
break |
|
full_frames.append(frame) |
|
break |
|
x_full_frames = [cv2.cvtColor(full_frames[0], cv2.COLOR_BGR2RGB) ] |
|
|
|
if True: |
|
x_full_frames, crop, quad = self.croper.crop(x_full_frames, xsize=pic_size) |
|
clx, cly, crx, cry = crop |
|
lx, ly, rx, ry = quad |
|
lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry) |
|
oy1, oy2, ox1, ox2 = cly+ly, cly+ry, clx+lx, clx+rx |
|
original_size = (ox2 - ox1, oy2 - oy1) |
|
else: |
|
oy1, oy2, ox1, ox2 = 0, x_full_frames[0].shape[0], 0, x_full_frames[0].shape[1] |
|
frames_pil = [Image.fromarray(cv2.resize(frame,(pic_size,pic_size))) for frame in x_full_frames] |
|
if len(frames_pil) == 0: |
|
print('No face is detected in the input file') |
|
return None, None |
|
|
|
|
|
for frame in frames_pil: |
|
cv2.imwrite(png_path, cv2.cvtColor(np.array(frame), cv2.COLOR_RGB2BGR)) |
|
|
|
|
|
if not os.path.isfile(landmarks_path): |
|
lm = self.kp_extractor.extract_keypoint(frames_pil, landmarks_path) |
|
else: |
|
print(' Using saved landmarks.') |
|
lm = np.loadtxt(landmarks_path).astype(np.float32) |
|
lm = lm.reshape([len(x_full_frames), -1, 2]) |
|
|
|
if not os.path.isfile(coeff_path): |
|
|
|
video_coeffs, full_coeffs = [], [] |
|
for idx in tqdm(range(len(frames_pil)), desc=' 3DMM Extraction In Video:'): |
|
frame = frames_pil[idx] |
|
W,H = frame.size |
|
lm1 = lm[idx].reshape([-1, 2]) |
|
|
|
if np.mean(lm1) == -1: |
|
lm1 = (self.lm3d_std[:, :2]+1)/2. |
|
lm1 = np.concatenate( |
|
[lm1[:, :1]*W, lm1[:, 1:2]*H], 1 |
|
) |
|
else: |
|
lm1[:, -1] = H - 1 - lm1[:, -1] |
|
|
|
trans_params, im1, lm1, _ = align_img(frame, lm1, self.lm3d_std) |
|
|
|
trans_params = np.array([float(item) for item in np.hsplit(trans_params, 5)]).astype(np.float32) |
|
im_t = torch.tensor(np.array(im1)/255., dtype=torch.float32).permute(2, 0, 1).to(self.device).unsqueeze(0) |
|
|
|
with torch.no_grad(): |
|
full_coeff = self.net_recon(im_t) |
|
coeffs = split_coeff(full_coeff) |
|
|
|
pred_coeff = {key:coeffs[key].cpu().numpy() for key in coeffs} |
|
|
|
pred_coeff = np.concatenate([ |
|
pred_coeff['exp'], |
|
pred_coeff['angle'], |
|
pred_coeff['trans'], |
|
trans_params[2:][None], |
|
], 1) |
|
video_coeffs.append(pred_coeff) |
|
full_coeffs.append(full_coeff.cpu().numpy()) |
|
|
|
semantic_npy = np.array(video_coeffs)[:,0] |
|
|
|
savemat(coeff_path, {'coeff_3dmm': semantic_npy, 'full_3dmm': np.array(full_coeffs)[0]}) |
|
|
|
return coeff_path, png_path |