|
import os |
|
import cv2 |
|
import time |
|
import glob |
|
import argparse |
|
import scipy |
|
import numpy as np |
|
from PIL import Image |
|
from tqdm import tqdm |
|
from itertools import cycle |
|
|
|
from torch.multiprocessing import Pool, Process, set_start_method |
|
|
|
|
|
""" |
|
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset) |
|
author: lzhbrian (https://lzhbrian.me) |
|
date: 2020.1.5 |
|
note: code is heavily borrowed from |
|
https://github.com/NVlabs/ffhq-dataset |
|
http://dlib.net/face_landmark_detection.py.html |
|
requirements: |
|
apt install cmake |
|
conda install Pillow numpy scipy |
|
pip install dlib |
|
# download face landmark model from: |
|
# http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 |
|
""" |
|
|
|
import numpy as np |
|
from PIL import Image |
|
import dlib |
|
|
|
|
|
class Croper: |
|
def __init__(self, path_of_lm): |
|
|
|
self.predictor = dlib.shape_predictor(path_of_lm) |
|
|
|
def get_landmark(self, img_np): |
|
"""get landmark with dlib |
|
:return: np.array shape=(68, 2) |
|
""" |
|
detector = dlib.get_frontal_face_detector() |
|
dets = detector(img_np, 1) |
|
|
|
|
|
if len(dets) == 0: |
|
return None |
|
d = dets[0] |
|
|
|
shape = self.predictor(img_np, d) |
|
|
|
t = list(shape.parts()) |
|
a = [] |
|
for tt in t: |
|
a.append([tt.x, tt.y]) |
|
lm = np.array(a) |
|
|
|
return lm |
|
|
|
def align_face(self, img, lm, output_size=1024): |
|
""" |
|
:param filepath: str |
|
:return: PIL Image |
|
""" |
|
lm_chin = lm[0: 17] |
|
lm_eyebrow_left = lm[17: 22] |
|
lm_eyebrow_right = lm[22: 27] |
|
lm_nose = lm[27: 31] |
|
lm_nostrils = lm[31: 36] |
|
lm_eye_left = lm[36: 42] |
|
lm_eye_right = lm[42: 48] |
|
lm_mouth_outer = lm[48: 60] |
|
lm_mouth_inner = lm[60: 68] |
|
|
|
|
|
eye_left = np.mean(lm_eye_left, axis=0) |
|
eye_right = np.mean(lm_eye_right, axis=0) |
|
eye_avg = (eye_left + eye_right) * 0.5 |
|
eye_to_eye = eye_right - eye_left |
|
mouth_left = lm_mouth_outer[0] |
|
mouth_right = lm_mouth_outer[6] |
|
mouth_avg = (mouth_left + mouth_right) * 0.5 |
|
eye_to_mouth = mouth_avg - eye_avg |
|
|
|
|
|
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] |
|
x /= np.hypot(*x) |
|
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) |
|
y = np.flipud(x) * [-1, 1] |
|
c = eye_avg + eye_to_mouth * 0.1 |
|
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) |
|
qsize = np.hypot(*x) * 2 |
|
|
|
|
|
|
|
shrink = int(np.floor(qsize / output_size * 0.5)) |
|
if shrink > 1: |
|
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) |
|
img = img.resize(rsize, Image.ANTIALIAS) |
|
quad /= shrink |
|
qsize /= shrink |
|
|
|
|
|
border = max(int(np.rint(qsize * 0.1)), 3) |
|
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), |
|
int(np.ceil(max(quad[:, 1])))) |
|
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), |
|
min(crop[3] + border, img.size[1])) |
|
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: |
|
|
|
quad -= crop[0:2] |
|
|
|
|
|
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), |
|
int(np.ceil(max(quad[:, 1])))) |
|
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), |
|
max(pad[3] - img.size[1] + border, 0)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
quad = (quad + 0.5).flatten() |
|
lx = max(min(quad[0], quad[2]), 0) |
|
ly = max(min(quad[1], quad[7]), 0) |
|
rx = min(max(quad[4], quad[6]), img.size[0]) |
|
ry = min(max(quad[3], quad[5]), img.size[0]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
return crop, [lx, ly, rx, ry] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def crop(self, img_np_list, xsize=512): |
|
img_np = img_np_list[0] |
|
lm = self.get_landmark(img_np) |
|
if lm is None: |
|
return None |
|
crop, quad = self.align_face(img=Image.fromarray(img_np), lm=lm, output_size=xsize) |
|
clx, cly, crx, cry = crop |
|
lx, ly, rx, ry = quad |
|
lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry) |
|
for _i in range(len(img_np_list)): |
|
_inp = img_np_list[_i] |
|
_inp = _inp[cly:cry, clx:crx] |
|
|
|
_inp = _inp[ly:ry, lx:rx] |
|
|
|
img_np_list[_i] = _inp |
|
return img_np_list, crop, quad |
|
|
|
|
|
def read_video(filename, uplimit=100): |
|
frames = [] |
|
cap = cv2.VideoCapture(filename) |
|
cnt = 0 |
|
while cap.isOpened(): |
|
ret, frame = cap.read() |
|
if ret: |
|
frame = cv2.resize(frame, (512, 512)) |
|
frames.append(frame) |
|
else: |
|
break |
|
cnt += 1 |
|
if cnt >= uplimit: |
|
break |
|
cap.release() |
|
assert len(frames) > 0, f'{filename}: video with no frames!' |
|
return frames |
|
|
|
|
|
def create_video(video_name, frames, fps=25, video_format='.mp4', resize_ratio=1): |
|
|
|
|
|
|
|
|
|
|
|
|
|
height, width, layers = 512, 512, 3 |
|
if video_format == '.mp4': |
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v') |
|
elif video_format == '.avi': |
|
fourcc = cv2.VideoWriter_fourcc(*'XVID') |
|
video = cv2.VideoWriter(video_name, fourcc, fps, (width, height)) |
|
for _frame in frames: |
|
_frame = cv2.resize(_frame, (height, width), interpolation=cv2.INTER_LINEAR) |
|
video.write(_frame) |
|
|
|
def create_images(video_name, frames): |
|
height, width, layers = 512, 512, 3 |
|
images_dir = video_name.split('.')[0] |
|
os.makedirs(images_dir, exist_ok=True) |
|
for i, _frame in enumerate(frames): |
|
_frame = cv2.resize(_frame, (height, width), interpolation=cv2.INTER_LINEAR) |
|
_frame_path = os.path.join(images_dir, str(i)+'.jpg') |
|
cv2.imwrite(_frame_path, _frame) |
|
|
|
def run(data): |
|
filename, opt, device = data |
|
os.environ['CUDA_VISIBLE_DEVICES'] = device |
|
croper = Croper() |
|
|
|
frames = read_video(filename, uplimit=opt.uplimit) |
|
name = filename.split('/')[-1] |
|
name = os.path.join(opt.output_dir, name) |
|
|
|
frames = croper.crop(frames) |
|
if frames is None: |
|
print(f'{name}: detect no face. should removed') |
|
return |
|
|
|
create_images(name, frames) |
|
|
|
|
|
def get_data_path(video_dir): |
|
eg_video_files = ['/apdcephfs/share_1290939/quincheng/datasets/HDTF/backup_fps25/WDA_KatieHill_000.mp4'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return eg_video_files |
|
|
|
|
|
def get_wra_data_path(video_dir): |
|
if opt.option == 'video': |
|
videos_path = sorted(glob.glob(f'{video_dir}/*.mp4')) |
|
elif opt.option == 'image': |
|
videos_path = sorted(glob.glob(f'{video_dir}/*/')) |
|
else: |
|
raise NotImplementedError |
|
print('Example videos: ', videos_path[:2]) |
|
return videos_path |
|
|
|
|
|
if __name__ == '__main__': |
|
set_start_method('spawn') |
|
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
|
parser.add_argument('--input_dir', type=str, help='the folder of the input files') |
|
parser.add_argument('--output_dir', type=str, help='the folder of the output files') |
|
parser.add_argument('--device_ids', type=str, default='0,1') |
|
parser.add_argument('--workers', type=int, default=8) |
|
parser.add_argument('--uplimit', type=int, default=500) |
|
parser.add_argument('--option', type=str, default='video') |
|
|
|
root = '/apdcephfs/share_1290939/quincheng/datasets/HDTF' |
|
cmd = f'--input_dir {root}/backup_fps25_first20s_sync/ ' \ |
|
f'--output_dir {root}/crop512_stylegan_firstframe_sync/ ' \ |
|
'--device_ids 0 ' \ |
|
'--workers 8 ' \ |
|
'--option video ' \ |
|
'--uplimit 500 ' |
|
opt = parser.parse_args(cmd.split()) |
|
|
|
filenames = get_wra_data_path(opt.input_dir) |
|
os.makedirs(opt.output_dir, exist_ok=True) |
|
print(f'Video numbers: {len(filenames)}') |
|
pool = Pool(opt.workers) |
|
args_list = cycle([opt]) |
|
device_ids = opt.device_ids.split(",") |
|
device_ids = cycle(device_ids) |
|
for data in tqdm(pool.imap_unordered(run, zip(filenames, args_list, device_ids))): |
|
None |
|
|