tkkkkk commited on
Commit
1ea2bbe
·
verified ·
1 Parent(s): 56e1b2d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -147
app.py CHANGED
@@ -1,154 +1,85 @@
1
- import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
 
 
8
 
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
  inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
  ],
150
- outputs=[result, seed],
 
 
151
  )
 
152
 
 
153
  if __name__ == "__main__":
154
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import torch
2
+ from diffusers import StableDiffusionPipeline
3
+ import gradio as gr
4
 
5
+ # 选择一个文生图模型
6
+ MODEL_NAME = "runwayml/stable-diffusion-v1-5"
7
+
8
+ def load_model():
9
+ """
10
+ 自动下载并加载文生图模型
11
+ """
12
+ try:
13
+ # 使用 torch.float16 减少显存占用
14
+ pipe = StableDiffusionPipeline.from_pretrained(
15
+ MODEL_NAME,
16
+ torch_dtype=torch.float16
17
+ )
18
+
19
+ # 如果有GPU,移动模型到GPU
20
+ if torch.cuda.is_available():
21
+ pipe = pipe.to("cuda")
22
+
23
+ return pipe
24
+ except Exception as e:
25
+ print(f"模型加载错误: {e}")
26
+ return None
27
+
28
+ # 全局模型变量
29
+ generation_pipe = load_model()
30
+
31
+ def generate_image(prompt, negative_prompt="", steps=50, guidance_scale=7.5):
32
+ """
33
+ 根据文本提示生成图像
34
+
35
+ :param prompt: 图像生成提示词
36
+ :param negative_prompt: 负面提示词
37
+ :param steps: 生成步数
38
+ :param guidance_scale: 引导强度
39
+ :return: 生成的图像
40
+ """
41
+ if generation_pipe is None:
42
+ return "模型加载失败"
43
+
44
+ try:
45
+ # 生成图像
46
+ image = generation_pipe(
47
+ prompt,
48
+ negative_prompt=negative_prompt,
49
+ num_inference_steps=steps,
50
+ guidance_scale=guidance_scale
51
+ ).images[0]
52
+
53
+ return image
54
+ except Exception as e:
55
+ print(f"图像生成错误: {e}")
56
+ return None
57
+
58
+ # 创建 Gradio 界面
59
+ def create_interface():
60
+ iface = gr.Interface(
61
+ fn=generate_image,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  inputs=[
63
+ gr.Textbox(label="图像描述 (Prompt)"),
64
+ gr.Textbox(label="负面描述 (Negative Prompt)", value=""),
65
+ gr.Slider(minimum=10, maximum=100, value=50, label="生成步数"),
66
+ gr.Slider(minimum=1, maximum=15, value=7.5, label="引导强度")
 
 
 
 
67
  ],
68
+ outputs=gr.Image(label="生成的图像"),
69
+ title="文生图生成",
70
+ description="使用 Stable Diffusion 从文本生成图像"
71
  )
72
+ return iface
73
 
74
+ # 启动应用
75
  if __name__ == "__main__":
76
+ # 检查并提示模型加载状态
77
+ if generation_pipe is None:
78
+ print("警告:模型加载失败,应用可能无法正常工作")
79
+
80
+ # 启动 Gradio 界面
81
+ interface = create_interface()
82
+ interface.launch(
83
+ # 如果需要公开访问,取消注释下面的行
84
+ # share=True
85
+ )