Spaces:
Runtime error
Runtime error
Tyler Burns
commited on
Commit
•
aa47d0d
1
Parent(s):
d141533
changed the baseline result
Browse files- app.py +1 -1
- flycheck_app.py +0 -138
app.py
CHANGED
@@ -22,7 +22,7 @@ np.random.seed(42)
|
|
22 |
use_keywords = False
|
23 |
|
24 |
# The search bar
|
25 |
-
keywords = st.text_input('Enter your search', '
|
26 |
|
27 |
to_display = 'body' # Sometimes this is title
|
28 |
md = ddg(keywords, region='wt-wt', safesearch='Moderate', time='y', max_results=500)
|
|
|
22 |
use_keywords = False
|
23 |
|
24 |
# The search bar
|
25 |
+
keywords = st.text_input('Enter your search', 'AI news')
|
26 |
|
27 |
to_display = 'body' # Sometimes this is title
|
28 |
md = ddg(keywords, region='wt-wt', safesearch='Moderate', time='y', max_results=500)
|
flycheck_app.py
DELETED
@@ -1,138 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from duckduckgo_search import ddg
|
3 |
-
import pandas as pd
|
4 |
-
from sentence_transformers import SentenceTransformer
|
5 |
-
import umap.umap_ as umap
|
6 |
-
import numpy as np
|
7 |
-
import sys
|
8 |
-
import plotly.express as px
|
9 |
-
import re
|
10 |
-
import sklearn.cluster as cluster
|
11 |
-
import nltk
|
12 |
-
from nltk.stem import WordNetLemmatizer
|
13 |
-
from keybert import KeyBERT
|
14 |
-
nltk.download('punkt')
|
15 |
-
nltk.download('omw-1.4')
|
16 |
-
nltk.download('wordnet')
|
17 |
-
|
18 |
-
# Set a seed
|
19 |
-
np.random.seed(42)
|
20 |
-
|
21 |
-
# Temp, for keywords
|
22 |
-
use_keywords = False
|
23 |
-
|
24 |
-
# The search bar
|
25 |
-
keywords = st.text_input('Enter your search', 'How to use ChatGPT')
|
26 |
-
|
27 |
-
to_display = 'body' # Sometimes this is title
|
28 |
-
md = ddg(keywords, region='wt-wt', safesearch='Moderate', time='y', max_results=500)
|
29 |
-
md = pd.DataFrame(md)
|
30 |
-
|
31 |
-
# Load the model
|
32 |
-
print("running sentence embeddings...")
|
33 |
-
# model_name = 'all-mpnet-base-v2'
|
34 |
-
model_name = 'all-MiniLM-L6-v2'
|
35 |
-
model = SentenceTransformer(model_name)
|
36 |
-
sentence_embeddings = model.encode(md['title'].tolist(), show_progress_bar = True)
|
37 |
-
sentence_embeddings = pd.DataFrame(sentence_embeddings)
|
38 |
-
|
39 |
-
# Reduce dimensionality
|
40 |
-
print("reducing dimensionality...")
|
41 |
-
reducer = umap.UMAP(metric = 'cosine')
|
42 |
-
dimr = reducer.fit_transform(sentence_embeddings)
|
43 |
-
dimr = pd.DataFrame(dimr, columns = ['umap1', 'umap2'])
|
44 |
-
|
45 |
-
columns = ['title', 'href', 'body']
|
46 |
-
|
47 |
-
# Clustering
|
48 |
-
labels = cluster.KMeans(n_clusters=5).fit_predict(dimr[['umap1', 'umap2']])
|
49 |
-
dimr['cluster'] = labels
|
50 |
-
|
51 |
-
# Make the coloring easier on the eyes
|
52 |
-
dimr['cluster'] = dimr['cluster'].astype('category')
|
53 |
-
|
54 |
-
# Now we can search cluster in the table
|
55 |
-
dimr['cluster'] = ['cluster ' + str(x) for x in dimr['cluster']]
|
56 |
-
|
57 |
-
# Merge the data together
|
58 |
-
dat = pd.concat([md.reset_index(), dimr.reset_index()], axis = 1)
|
59 |
-
|
60 |
-
# The keywords
|
61 |
-
|
62 |
-
if use_keywords:
|
63 |
-
# Add keywords to the clusters
|
64 |
-
# Create WordNetLemmatizer object
|
65 |
-
print('extracting keywords per cluster...')
|
66 |
-
wnl = WordNetLemmatizer()
|
67 |
-
kw_model = KeyBERT()
|
68 |
-
|
69 |
-
keywords_df = []
|
70 |
-
for i in np.unique(dat['cluster']):
|
71 |
-
curr = dat[dat['cluster'] == i]
|
72 |
-
text = ' '.join(curr['body'])
|
73 |
-
|
74 |
-
# Lemmatization
|
75 |
-
text = nltk.word_tokenize(text)
|
76 |
-
text = [wnl.lemmatize(i) for i in text]
|
77 |
-
text = ' '.join(text)
|
78 |
-
|
79 |
-
# Keyword extraction
|
80 |
-
TR_keywords = kw_model.extract_keywords(text)
|
81 |
-
keywords_df.append(TR_keywords[0:10])
|
82 |
-
|
83 |
-
keywords_df = pd.DataFrame(keywords_df)
|
84 |
-
keywords_df['cluster'] = np.unique(dimr['cluster'])
|
85 |
-
keywords_df.columns = ['keyword1', 'keyword2', 'keyword3', 'keyword4', 'keyword5', 'cluster']
|
86 |
-
|
87 |
-
# Get the keyword data into the dataframe
|
88 |
-
dat = dat.merge(keywords_df) # This messes up the index, so we need to reset it
|
89 |
-
dat = dat.reset_index(drop = True)
|
90 |
-
|
91 |
-
# handle duplicate index columns
|
92 |
-
dat = dat.loc[:,~dat.columns.duplicated()]
|
93 |
-
|
94 |
-
# Get it ready for plotting
|
95 |
-
dat['title'] = dat.title.str.wrap(30).apply(lambda x: x.replace('\n', '<br>'))
|
96 |
-
dat['body'] = dat.body.str.wrap(30).apply(lambda x: x.replace('\n', '<br>'))
|
97 |
-
|
98 |
-
# Visualize the data
|
99 |
-
fig = px.scatter(dat, x = 'umap1', y = 'umap2', hover_data = ['title', 'body'], color = 'cluster', title = 'Context similarity map of results')
|
100 |
-
|
101 |
-
# Make the font a little bigger
|
102 |
-
fig.update_layout(
|
103 |
-
hoverlabel=dict(
|
104 |
-
bgcolor="white",
|
105 |
-
font_size=16
|
106 |
-
)
|
107 |
-
)
|
108 |
-
|
109 |
-
# x and y are same size
|
110 |
-
fig.update_yaxes(
|
111 |
-
scaleanchor="x",
|
112 |
-
scaleratio=1,
|
113 |
-
)
|
114 |
-
|
115 |
-
# Show the figure
|
116 |
-
st.plotly_chart(fig, use_container_width=True)
|
117 |
-
|
118 |
-
# Remove <br> in the text for the table
|
119 |
-
dat['title'] = [re.sub('<br>', ' ', i) for i in dat['title']]
|
120 |
-
dat['body'] = [re.sub('<br>', ' ', i) for i in dat['body']]
|
121 |
-
|
122 |
-
# Instructions
|
123 |
-
st.caption('Use ctrl+f (or command+f for mac) to search the table')
|
124 |
-
|
125 |
-
# remove irrelevant columns from dat
|
126 |
-
dat = dat.drop(columns=['index', 'umap1', 'umap2'])
|
127 |
-
|
128 |
-
# Make the link clickable
|
129 |
-
# pandas display options
|
130 |
-
pd.set_option('display.max_colwidth', -1)
|
131 |
-
|
132 |
-
def make_clickable(url, text):
|
133 |
-
return f'<a target="_blank" href="{url}">{text}</a>'
|
134 |
-
|
135 |
-
dat['href'] = dat['href'].apply(make_clickable, args = ('Click here',))
|
136 |
-
|
137 |
-
st.write(dat.to_html(escape = False), unsafe_allow_html = True)
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|