Spaces:
Runtime error
Runtime error
Tyler Burns
commited on
Commit
·
61f93fd
1
Parent(s):
70dcacb
turn the cluster into a cateogry, the r eqivalent of factor
Browse files- app.py +3 -0
- flycheck_app.py +84 -0
app.py
CHANGED
@@ -40,6 +40,9 @@ columns = ['title', 'href', 'body']
|
|
40 |
labels = cluster.KMeans(n_clusters=5).fit_predict(dimr[['umap1', 'umap2']])
|
41 |
dimr['cluster'] = labels
|
42 |
|
|
|
|
|
|
|
43 |
# Merge the data together
|
44 |
dat = pd.concat([md.reset_index(), dimr.reset_index()], axis = 1)
|
45 |
|
|
|
40 |
labels = cluster.KMeans(n_clusters=5).fit_predict(dimr[['umap1', 'umap2']])
|
41 |
dimr['cluster'] = labels
|
42 |
|
43 |
+
# Make the coloring easier on the eyes
|
44 |
+
dimr['cluster'] = dimr['cluster'].astype('category')
|
45 |
+
|
46 |
# Merge the data together
|
47 |
dat = pd.concat([md.reset_index(), dimr.reset_index()], axis = 1)
|
48 |
|
flycheck_app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from duckduckgo_search import ddg
|
3 |
+
import pandas as pd
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
import umap.umap_ as umap
|
6 |
+
import numpy as np
|
7 |
+
import sys
|
8 |
+
import plotly.express as px
|
9 |
+
import re
|
10 |
+
import sklearn.cluster as cluster
|
11 |
+
|
12 |
+
# The search bar
|
13 |
+
keywords = st.text_input('Enter your search', 'How to use ChatGPT')
|
14 |
+
|
15 |
+
# Set keywords as command line argument
|
16 |
+
# print("searching for: " + ' '.join(sys.argv[1:]) + "...")
|
17 |
+
# keywords = ' '.join(sys.argv[1:])
|
18 |
+
|
19 |
+
to_display = 'body' # Sometimes this is title
|
20 |
+
md = ddg(keywords, region='wt-wt', safesearch='Moderate', time='y', max_results=500)
|
21 |
+
md = pd.DataFrame(md)
|
22 |
+
|
23 |
+
# Load the model
|
24 |
+
print("running sentence embeddings...")
|
25 |
+
# model_name = 'all-mpnet-base-v2'
|
26 |
+
model_name = 'all-MiniLM-L6-v2'
|
27 |
+
model = SentenceTransformer(model_name)
|
28 |
+
sentence_embeddings = model.encode(md['body'].tolist(), show_progress_bar = True)
|
29 |
+
sentence_embeddings = pd.DataFrame(sentence_embeddings)
|
30 |
+
|
31 |
+
# Reduce dimensionality
|
32 |
+
print("reducing dimensionality...")
|
33 |
+
reducer = umap.UMAP(metric = 'cosine')
|
34 |
+
dimr = reducer.fit_transform(sentence_embeddings)
|
35 |
+
dimr = pd.DataFrame(dimr, columns = ['umap1', 'umap2'])
|
36 |
+
|
37 |
+
columns = ['title', 'href', 'body']
|
38 |
+
|
39 |
+
# Clustering
|
40 |
+
labels = cluster.KMeans(n_clusters=5).fit_predict(dimr[['umap1', 'umap2']])
|
41 |
+
dimr['cluster'] = labels
|
42 |
+
|
43 |
+
# Make the coloring easier on the eyes
|
44 |
+
dimr['cluster'] = dimr['cluster'].astype('category')
|
45 |
+
|
46 |
+
# Merge the data together
|
47 |
+
dat = pd.concat([md.reset_index(), dimr.reset_index()], axis = 1)
|
48 |
+
|
49 |
+
# handle duplicate index columns
|
50 |
+
dat = dat.loc[:,~dat.columns.duplicated()]
|
51 |
+
|
52 |
+
# Get it ready for plotting
|
53 |
+
dat['title'] = dat.title.str.wrap(30).apply(lambda x: x.replace('\n', '<br>'))
|
54 |
+
dat['body'] = dat.body.str.wrap(30).apply(lambda x: x.replace('\n', '<br>'))
|
55 |
+
|
56 |
+
# Visualize
|
57 |
+
fig = px.scatter(dat, x = 'umap1', y = 'umap2', hover_data = ['title', 'body'], color = 'cluster', title = 'Context similarity map of results')
|
58 |
+
|
59 |
+
# Make the font a little bigger
|
60 |
+
fig.update_layout(
|
61 |
+
hoverlabel=dict(
|
62 |
+
bgcolor="white",
|
63 |
+
font_size=16
|
64 |
+
)
|
65 |
+
)
|
66 |
+
|
67 |
+
# Show the figure
|
68 |
+
st.plotly_chart(fig, use_container_width=True)
|
69 |
+
|
70 |
+
# Remove <br> in the text for the table
|
71 |
+
dat['title'] = [re.sub('<br>', ' ', i) for i in dat['title']]
|
72 |
+
dat['body'] = [re.sub('<br>', ' ', i) for i in dat['body']]
|
73 |
+
|
74 |
+
# Instructions
|
75 |
+
st.caption('Click on the table and press ctrl+f (or command+f for mac) to search it')
|
76 |
+
|
77 |
+
# Make the link clickable
|
78 |
+
def make_clickable(val):
|
79 |
+
return f'<a target="_blank" href="{val}">{val}</a>'
|
80 |
+
|
81 |
+
dat.style.format({'href': make_clickable})
|
82 |
+
|
83 |
+
# Place a table under the plot
|
84 |
+
st.dataframe(dat)
|