Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import torch | |
| from pathlib import Path | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from PIL import Image | |
| from torchvision import transforms | |
| import gradio as gr | |
| transform = transforms.Compose([ | |
| transforms.Resize((28, 28)), | |
| transforms.Grayscale(), | |
| transforms.ToTensor() | |
| ]) | |
| labels = ["๐ (ศูนย์)", "๑ (หนึ่ง)", "๒ (สอง)", "๓ (สาม)", "๔ (สี่)", "๕ (ห้า)", "๖ (หก)", "๗ (เจ็ด)", "๘ (แปด)", "๙ (เก้า)"] | |
| LABELS = {i:k for i, k in enumerate(labels)} # dictionary of index and label | |
| # Load model using DropoutThaiDigit instead | |
| class DropoutThaiDigit(nn.Module): | |
| def __init__(self): | |
| super(DropoutThaiDigit, self).__init__() | |
| self.fc1 = nn.Linear(28 * 28, 392) | |
| self.fc2 = nn.Linear(392, 196) | |
| self.fc3 = nn.Linear(196, 98) | |
| self.fc4 = nn.Linear(98, 10) | |
| self.dropout = nn.Dropout(0.1) | |
| def forward(self, x): | |
| x = x.view(-1, 28 * 28) | |
| x = self.fc1(x) | |
| x = F.relu(x) | |
| x = self.dropout(x) | |
| x = self.fc2(x) | |
| x = F.relu(x) | |
| x = self.dropout(x) | |
| x = self.fc3(x) | |
| x = F.relu(x) | |
| x = self.dropout(x) | |
| x = self.fc4(x) | |
| return x | |
| model = DropoutThaiDigit() | |
| model.load_state_dict(torch.load("thai_digit_net.pth")) | |
| model.eval() | |
| import numpy as np | |
| import torch | |
| from pathlib import Path | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from PIL import Image | |
| from torchvision import transforms | |
| import gradio as gr | |
| transform = transforms.Compose([ | |
| transforms.Resize((28, 28)), | |
| transforms.Grayscale(), | |
| transforms.ToTensor() | |
| ]) | |
| labels = ["๐ (ศูนย์)", "๑ (หนึ่ง)", "๒ (สอง)", "๓ (สาม)", "๔ (สี่)", "๕ (ห้า)", "๖ (หก)", "๗ (เจ็ด)", "๘ (แปด)", "๙ (เก้า)"] | |
| LABELS = {i:k for i, k in enumerate(labels)} # dictionary of index and label | |
| # Load model using DropoutThaiDigit instead | |
| class DropoutThaiDigit(nn.Module): | |
| def __init__(self): | |
| super(DropoutThaiDigit, self).__init__() | |
| self.fc1 = nn.Linear(28 * 28, 392) | |
| self.fc2 = nn.Linear(392, 196) | |
| self.fc3 = nn.Linear(196, 98) | |
| self.fc4 = nn.Linear(98, 10) | |
| self.dropout = nn.Dropout(0.1) | |
| def forward(self, x): | |
| x = x.view(-1, 28 * 28) | |
| x = self.fc1(x) | |
| x = F.relu(x) | |
| x = self.dropout(x) | |
| x = self.fc2(x) | |
| x = F.relu(x) | |
| x = self.dropout(x) | |
| x = self.fc3(x) | |
| x = F.relu(x) | |
| x = self.dropout(x) | |
| x = self.fc4(x) | |
| return x | |
| model = DropoutThaiDigit() | |
| model.load_state_dict(torch.load("thai_digit_net.pth")) | |
| model.eval() | |
| def predict(img): | |
| """ | |
| Predict function takes image editor data and returns top 5 predictions | |
| as a dictionary: | |
| {label: confidence, label: confidence, ...} | |
| """ | |
| if img is None: | |
| return {} | |
| # Handle if Sketchpad returns a dictionary | |
| if isinstance(img, dict): | |
| # Try common keys that might contain the image | |
| img = img.get('image') or img.get('composite') or img.get('background') | |
| if img is None: | |
| return {} | |
| img = 1 - transform(img) # do not need to use 1 - transform(img) because gradio already do it | |
| probs = model(img).softmax(dim=1).ravel() | |
| probs, indices = torch.topk(probs, 5) # select top 5 | |
| confidences = {LABELS[i]: float(prob) for i, prob in zip(indices.tolist(), probs.tolist())} | |
| return confidences | |
| with gr.Blocks(title="Thai Digit Handwritten Classification") as interface: | |
| gr.Markdown("# Thai Digit Handwritten Classification") | |
| gr.Markdown("Draw a Thai digit (๐-๙) in the box below:") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_component = gr.Sketchpad( | |
| label="Draw Here", | |
| height=300, | |
| width=300, | |
| brush=gr.Brush(default_size=8, colors=["#000000"]), | |
| eraser=False, | |
| type="pil", | |
| canvas_size=(300, 300), | |
| ) | |
| with gr.Column(): | |
| output_component = gr.Label(label="Prediction", num_top_classes=5) | |
| # Set up the prediction | |
| input_component.change( | |
| fn=predict, | |
| inputs=input_component, | |
| outputs=output_component | |
| ) | |
| interface.launch() |