titipata's picture
Update app.py
8c8a504 verified
import numpy as np
import torch
from pathlib import Path
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from torchvision import transforms
import gradio as gr
transform = transforms.Compose([
transforms.Resize((28, 28)),
transforms.Grayscale(),
transforms.ToTensor()
])
labels = ["๐ (ศูนย์)", "๑ (หนึ่ง)", "๒ (สอง)", "๓ (สาม)", "๔ (สี่)", "๕ (ห้า)", "๖ (หก)", "๗ (เจ็ด)", "๘ (แปด)", "๙ (เก้า)"]
LABELS = {i:k for i, k in enumerate(labels)} # dictionary of index and label
# Load model using DropoutThaiDigit instead
class DropoutThaiDigit(nn.Module):
def __init__(self):
super(DropoutThaiDigit, self).__init__()
self.fc1 = nn.Linear(28 * 28, 392)
self.fc2 = nn.Linear(392, 196)
self.fc3 = nn.Linear(196, 98)
self.fc4 = nn.Linear(98, 10)
self.dropout = nn.Dropout(0.1)
def forward(self, x):
x = x.view(-1, 28 * 28)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout(x)
x = self.fc2(x)
x = F.relu(x)
x = self.dropout(x)
x = self.fc3(x)
x = F.relu(x)
x = self.dropout(x)
x = self.fc4(x)
return x
model = DropoutThaiDigit()
model.load_state_dict(torch.load("thai_digit_net.pth"))
model.eval()
import numpy as np
import torch
from pathlib import Path
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from torchvision import transforms
import gradio as gr
transform = transforms.Compose([
transforms.Resize((28, 28)),
transforms.Grayscale(),
transforms.ToTensor()
])
labels = ["๐ (ศูนย์)", "๑ (หนึ่ง)", "๒ (สอง)", "๓ (สาม)", "๔ (สี่)", "๕ (ห้า)", "๖ (หก)", "๗ (เจ็ด)", "๘ (แปด)", "๙ (เก้า)"]
LABELS = {i:k for i, k in enumerate(labels)} # dictionary of index and label
# Load model using DropoutThaiDigit instead
class DropoutThaiDigit(nn.Module):
def __init__(self):
super(DropoutThaiDigit, self).__init__()
self.fc1 = nn.Linear(28 * 28, 392)
self.fc2 = nn.Linear(392, 196)
self.fc3 = nn.Linear(196, 98)
self.fc4 = nn.Linear(98, 10)
self.dropout = nn.Dropout(0.1)
def forward(self, x):
x = x.view(-1, 28 * 28)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout(x)
x = self.fc2(x)
x = F.relu(x)
x = self.dropout(x)
x = self.fc3(x)
x = F.relu(x)
x = self.dropout(x)
x = self.fc4(x)
return x
model = DropoutThaiDigit()
model.load_state_dict(torch.load("thai_digit_net.pth"))
model.eval()
def predict(img):
"""
Predict function takes image editor data and returns top 5 predictions
as a dictionary:
{label: confidence, label: confidence, ...}
"""
if img is None:
return {}
# Handle if Sketchpad returns a dictionary
if isinstance(img, dict):
# Try common keys that might contain the image
img = img.get('image') or img.get('composite') or img.get('background')
if img is None:
return {}
img = 1 - transform(img) # do not need to use 1 - transform(img) because gradio already do it
probs = model(img).softmax(dim=1).ravel()
probs, indices = torch.topk(probs, 5) # select top 5
confidences = {LABELS[i]: float(prob) for i, prob in zip(indices.tolist(), probs.tolist())}
return confidences
with gr.Blocks(title="Thai Digit Handwritten Classification") as interface:
gr.Markdown("# Thai Digit Handwritten Classification")
gr.Markdown("Draw a Thai digit (๐-๙) in the box below:")
with gr.Row():
with gr.Column():
input_component = gr.Sketchpad(
label="Draw Here",
height=300,
width=300,
brush=gr.Brush(default_size=8, colors=["#000000"]),
eraser=False,
type="pil",
canvas_size=(300, 300),
)
with gr.Column():
output_component = gr.Label(label="Prediction", num_top_classes=5)
# Set up the prediction
input_component.change(
fn=predict,
inputs=input_component,
outputs=output_component
)
interface.launch()