Test / app.py
tinaok's picture
use resampled zarr
4a32de0 verified
raw
history blame
14.7 kB
import cftime
import fsspec
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import panel as pn
import xarray as xr
from ipywidgets import (
Checkbox,
# FloatRangeSlider,
FloatSlider,
IntRangeSlider,
IntSlider,
# interactive,
)
import param
pn.extension("tabulator")
def greg_0h(jourjul):
import math
# Julian days start and end at noon.
# Julian day 2440000 begins at 00 hours, May 23, 1968.
# Round the input Julian day number to avoid precision errors
fac = 10**9
jourjul = np.round(fac * jourjul + 0.5) / fac
# Calculate seconds in the day
secs = (jourjul % 1) * 24 * 3600
# Round seconds to avoid precision errors
secs = np.round(fac * secs + 0.5) / fac
# Gregorian calendar conversion
j = math.floor(jourjul) - 1721119
in_ = 4 * j - 1
y = math.floor(in_ / 146097)
j = in_ - 146097 * y
in_ = math.floor(j / 4)
in_ = 4 * in_ + 3
j = math.floor(in_ / 1461)
d = math.floor(((in_ - 1461 * j) + 4) / 4)
in_ = 5 * d - 3
m = math.floor(in_ / 153)
d = math.floor(((in_ - 153 * m) + 5) / 5)
y = y * 100 + j
if m < 10:
mo = m + 3
yr = y
else:
mo = m - 9
yr = y + 1
hour = math.floor(secs / 3600)
mins = math.floor((secs % 3600) / 60)
sec = int(secs % 60)
gtime = [yr, mo, d, hour, mins, sec]
return gtime
def fix_time(ds):
from datetime import datetime, timedelta
time = ds["TIME"]
time2 = time.dropna(dim="MAXT")
time2 = time2.reindex_like(time, method="nearest")
jourjul = [greg_0h(jourjul) for jourjul in time2.values]
date = [
datetime(jourjul[0], jourjul[1], jourjul[2], jourjul[3], jourjul[4], jourjul[5])
for jourjul in jourjul
]
date = xr.DataArray(date, dims="MAXT")
return ds.assign(TIME=date)
@pn.cache(max_items=32,policy='LRU',per_session=True)
def load_csv():
url="https://data-eurogoship.ifremer.fr/data/zarr_table.csv"
fs = fsspec.filesystem("https")
with fs.open(url) as f:
df = pd.read_csv(f,index_col=None)
df.sort_values(by="year") #inplace=True)
return df
@pn.cache(max_items=4,policy='LRU',per_session=True)
def load_bathymetry():
#url="https://data-eurogoship.ifremer.fr/bathymetrie/bathy6min.nc"
#fs = fsspec.filesystem("https")
return xr.open_dataset('/data/bathy6min.nc', decode_times=False, use_cftime=True)
@pn.cache(max_items=16,policy='LRU',per_session=True)
def load_zarr(selected_file):
from datatree import open_datatree
tree= open_datatree('/data/1H_file.zarr', engine='zarr')
return tree[selected_file+"/"].ds
def filter_df(sorted_df,selected_file):
dataframe = sorted_df[sorted_df["file_name"] == selected_file].drop(
columns=[
"file_name",
"title",
"Conventions",
"featureType",
"date_update",
"ADCP_beam_angle",
"ADCP_ship_angle",
"middle_bin1_depth",
"heading_corr",
"pitch_corr",
"ampli_corr",
"pitch_roll_used",
"date_creation",
"ADCP_type",
"data_type",
]
)
dataframe2 = sorted_df[sorted_df["file_name"] == selected_file].drop(
columns=[
"file_name",
"date_start",
"date_end",
"ADCP_frequency(kHz)",
"bin_length(meter)",
"year",
]
)
return dataframe.transpose(), dataframe2.transpose()
def quiver_depth_filterd(ax,ds_filtered, depth1, depth_range_slider, scale_factor_slider, color="blue"):
import cartopy.crs as ccrs
depth_filtered = ds_filtered.where(
(depth1 > depth_range_slider.value[0])
& (depth1 <= depth_range_slider.value[1])
)
lon = ds_filtered.coords["LONGITUDE"].values
lat = ds_filtered.coords["LATITUDE"].values
# Moyenne des vecteurs de courant sur la plage de profondeur sélectionnée
u_mean = depth_filtered.UCUR.mean(dim="MAXZ", skipna=True)
v_mean = depth_filtered.VCUR.mean(dim="MAXZ", skipna=True)
return ax.quiver(
lon,
lat,
u_mean * scale_factor_slider.value,
v_mean * scale_factor_slider.value,
color=color,
scale=2,
width=0.001,
headwidth=3,
transform=ccrs.PlateCarree(),
)
class SADCP_Viewer(param.Parameterized):
df = load_csv()
bathy = load_bathymetry()
file_names = df["file_name"].tolist()
years = sorted(df["year"].unique())
year_slider = pn.widgets.IntRangeSlider(
name="Year Range", start=df["year"].min(), end=df["year"].max()
)
file_dropdown = pn.widgets.Select(name="File Selector")
data_table = pn.widgets.Tabulator(df, name="metadata", height=200, width=300)
# data_table2 = pn.widgets.Tabulator(df2, name="metadata", height=900, width=400)
longitude_slider = pn.widgets.RangeSlider(
name="Longitude Range", start=-180, end=180, step=1
)
latitude_slider = pn.widgets.RangeSlider(
name="Latitude Range", start=-90, end=90, step=1
)
depth_range_slider = pn.widgets.IntRangeSlider(
start=100, end=300, value=(100, 300), step=1, name="Depth Range"
)
depth_2_checkbox = pn.widgets.Checkbox(value=False, name="Depth 2 Checkbox")
depth_3_checkbox = pn.widgets.Checkbox(value=False, name="Depth 3 Checkbox")
depth2_range_slider = pn.widgets.IntRangeSlider(
start=100, end=300, value=(100, 300), step=1, name="Depth 2 Range"
)
depth3_range_slider = pn.widgets.IntRangeSlider(
start=100, end=300, value=(100, 300), step=1, name="Depth 3 Range"
)
num_vectors_slider = pn.widgets.IntSlider(
start=40, end=800, step=1, value=100, name="Number of Vectors"
)
scale_factor_slider = pn.widgets.FloatSlider(
start=0.1, end=1, step=0.1, value=0.5, name="Scale Factor"
)
bathy_checkbox = pn.widgets.Checkbox(value=False, name="Bathy Checkbox")
plot = pn.pane.HoloViews()
plot_map = pn.pane.Matplotlib(width=800, height=600, sizing_mode="fixed")
data_table = pn.widgets.Tabulator(width=400, height=200)
metadata_table = pn.widgets.Tabulator(width=600, height=800)
download_button = pn.widgets.Button(name="Download", button_type="primary")
# plot = pn.Column()
def __init__(self, **params):
super(SADCP_Viewer, self).__init__(**params)
self.file_dropdown.objects = self.get_file_list()
self.file_dropdown.value = (
self.file_dropdown.objects[0] if self.file_dropdown.objects else None
)
self.update_name_options()
@param.depends("year_slider.value", "file_dropdown.value", watch=True)
def update_name_options(self):
start_year, end_year = self.year_slider.value
mask = (self.df["year"] >= start_year) & (self.df["year"] <= end_year)
sorted_df = self.df[mask].sort_values(by="year")
files = sorted_df["file_name"].unique().tolist()
self.file_dropdown.options = files
if files:
selected_file = self.file_dropdown.value
if not selected_file or selected_file not in files:
selected_file = files[0]
self.file_dropdown.value = selected_file
self.data_table.value, self.metadata_table.value = filter_df(sorted_df,selected_file)
self.ds=load_zarr(selected_file)
lon_range = (
int(self.ds["LONGITUDE"].min().round() - 1),
int(self.ds["LONGITUDE"].max().round() + 1),
)
lat_range = (
int(self.ds["LATITUDE"].min().round() - 1),
int(self.ds["LATITUDE"].max().round() + 1),
)
self.depth1 = abs(self.ds.coords["PROFZ"])
deph_range = (int(self.depth1.min()), int(self.depth1.max()))
self.longitude_slider.start = lon_range[0]
self.longitude_slider.end = lon_range[1]
self.longitude_slider.value = lon_range
self.latitude_slider.start = lat_range[0]
self.latitude_slider.end = lat_range[1]
self.latitude_slider.value = lat_range
self.depth_range_slider.start = deph_range[0]
self.depth_range_slider.end = deph_range[1]
self.depth_range_slider.value = deph_range
self.depth2_range_slider.start = deph_range[0]
self.depth2_range_slider.end = deph_range[1]
self.depth2_range_slider.value = deph_range
self.depth3_range_slider.start = deph_range[0]
self.depth3_range_slider.end = deph_range[1]
self.depth3_range_slider.value = deph_range
# self.update_plots()
self.ds.close()
@param.depends(
"year_slider.value",
"file_dropdown.value",
"depth_range_slider.value",
"depth_2_checkbox.value",
"depth_3_checkbox.value",
"depth2_range_slider.value",
"depth3_range_slider.value",
"longitude_slider.value",
"latitude_slider.value",
"num_vectors_slider.value",
"scale_factor_slider.value",
"bathy_checkbox.value",
watch=False,
)
def update_plots(self):
self.ds_filtered = self.filter_data()
# vector_plot = self.vectors_plot()
other_plots = self.hvplot_plots()
# self.plot_map = pn.pane.Matplotlib(vector_plot, width=800, height=600, sizing_mode="fixed")
self.plot = pn.Column(
*(pn.pane.HoloViews(plot, width=400, height=200) for plot in other_plots),
sizing_mode="stretch_width"
)
vector_plot = self.vectors_plot() # Update vector plot
self.plot_map.object = vector_plot
# other_plots = self.plots() # Update other plots
# self.plot.objects = [*(pn.pane.HoloViews(p, width=400, height=200) for p in other_plots)]
# self.plot.object=plot
return pn.Row(self.plot_map, self.plot, sizing_mode="stretch_both")
def filter_data(self):
return self.ds.where(
(self.ds.LONGITUDE >= self.longitude_slider.start)
& (self.ds.LONGITUDE <= self.longitude_slider.end)
& (self.ds.LATITUDE >= self.latitude_slider.start)
& (self.ds.LATITUDE <= self.latitude_slider.end),
drop=True,
)
def vectors_plot(self):
import cartopy.crs as ccrs
import cartopy.feature as cfeature
self.ds_filtered = self.filter_data()
# return self.ds_filtered['VSHIP'].hvplot(x='TIME',width=400, height=200) #if 'BATHY' in self.ds_filtered else hvplot.show(hvplot.text(0, 0, "No data available", fontsize=12))
fig, ax = plt.subplots(
figsize=(8, 7), subplot_kw={"projection": ccrs.Mercator()}
)
coords = ["LATITUDE", "LONGITUDE"]
corsen = max(1, self.ds_filtered.MAXT.size // self.num_vectors_slider.value)
self.ds_filtered = (
self.ds_filtered.reset_coords(coords)
.coarsen({"MAXT": corsen}, boundary="trim")
.mean()
.set_coords(coords)
)
# self.ds_filtered =self.ds_filtered.coarsen(MAXT = corsen, side = "center", boundary = "trim").mean()[["LONGITUDE", "LONGITUDE", "TIME"]].isel(MAXZ=0)
quiver_depth_filterd(ax,self.ds_filtered, self.depth1, self.depth_range_slider,self.scale_factor_slider,color="blue")
if self.depth_2_checkbox.value:
quiver_depth_filterd(ax,self.ds_filtered, self.depth1, self.depth2_range_slider,self.scale_factor_slider,color="green")
if self.depth_3_checkbox.value:
quiver_depth_filterd(ax,self.ds_filtered, self.depth1, self.depth3_range_slider,self.scale_factor_slider,color="red")
ax.add_feature(cfeature.COASTLINE)
ax.add_feature(cfeature.BORDERS, linestyle=":")
ax.add_feature(cfeature.LAND, color="lightgray")
if self.bathy_checkbox.value:
contour_levels = [-1000]
ax.contour(
self.bathy.longitude,
self.bathy.latitude,
self.bathy.z,
levels=contour_levels,
colors="black",
transform=ccrs.PlateCarree(),
)
ax.set_extent(
[
self.longitude_slider.value[0],
self.longitude_slider.value[1],
self.latitude_slider.value[0],
self.latitude_slider.value[1],
]
)
ax.gridlines(draw_labels=True)
plt.ylabel("Latitude", fontsize=15, labelpad=35)
plt.xlabel("Longitude", fontsize=15, labelpad=20)
plt.close()
return fig
# pn.pane.Matplotlib(fig,width=800, height=600, sizing_mode="fixed", name="Plot")
# @param.depends( 'file_dropdown.value', 'longitude_slider.value', 'latitude_slider.value', watch=True)
def hvplot_plots(self):
import hvplot.xarray
return [
self.ds_filtered["BATHY"].max(dim="MAXZ").hvplot(x="TIME", width=400, height=200),
self.ds_filtered["USHIP"].max(dim="MAXZ").hvplot(x="TIME", width=400, height=200),
self.ds_filtered["VSHIP"].max(dim="MAXZ").hvplot(x="TIME", width=400, height=200),
self.ds_filtered["BOTTOM_DEPTH"].max(dim="MAXZ").hvplot(x="TIME", width=400, height=200),
]
def get_file_list(self):
return self.file_names
explorer = SADCP_Viewer()
# Instantiate the SADCP_Viewer class and create a template
tabs = pn.Tabs(
("Plots", pn.Column(explorer.update_plots)),
(
"Metadata",
pn.Column(
explorer.metadata_table, explorer.download_button, height=500, margin=10
),
),
)
sidebar = [
"""This application, developed in the frame of Euro Go Shop, helps to interactively visualise and download ship ADCP data.""",
explorer.year_slider,
explorer.file_dropdown,
explorer.longitude_slider,
explorer.latitude_slider,
explorer.bathy_checkbox,
explorer.depth_range_slider,
explorer.depth_2_checkbox,
explorer.depth_3_checkbox,
explorer.depth2_range_slider,
explorer.depth3_range_slider,
explorer.num_vectors_slider,
explorer.scale_factor_slider,
explorer.data_table,
]
template = pn.template.FastListTemplate(
title="SADCP data Viewer", sidebar=sidebar, main=[tabs]
)
template.servable()