timmy0079 commited on
Commit
147bc3d
β€’
1 Parent(s): dc4f29c

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -151
app.py DELETED
@@ -1,151 +0,0 @@
1
- import streamlit as st
2
- from dotenv import load_dotenv
3
- from PyPDF2 import PdfReader
4
- from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
5
- from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
6
- from langchain.vectorstores import FAISS, Chroma
7
- from langchain.embeddings import HuggingFaceEmbeddings # General embeddings from HuggingFace models.
8
- from langchain.chat_models import ChatOpenAI
9
- from langchain.memory import ConversationBufferMemory
10
- from langchain.chains import ConversationalRetrievalChain
11
- from htmlTemplates import css, bot_template, user_template
12
- from langchain.llms import HuggingFaceHub, LlamaCpp, CTransformers # For loading transformer models.
13
- from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader
14
- import tempfile # μž„μ‹œ νŒŒμΌμ„ μƒμ„±ν•˜κΈ° μœ„ν•œ λΌμ΄λΈŒλŸ¬λ¦¬μž…λ‹ˆλ‹€.
15
- import os
16
-
17
-
18
- # PDF λ¬Έμ„œλ‘œλΆ€ν„° ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•˜λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
19
- def get_pdf_text(pdf_docs):
20
- temp_dir = tempfile.TemporaryDirectory() # μž„μ‹œ 디렉토리λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
21
- temp_filepath = os.path.join(temp_dir.name, pdf_docs.name) # μž„μ‹œ 파일 경둜λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
22
- with open(temp_filepath, "wb") as f: # μž„μ‹œ νŒŒμΌμ„ λ°”μ΄λ„ˆλ¦¬ μ“°κΈ° λͺ¨λ“œλ‘œ μ—½λ‹ˆλ‹€.
23
- f.write(pdf_docs.getvalue()) # PDF λ¬Έμ„œμ˜ λ‚΄μš©μ„ μž„μ‹œ νŒŒμΌμ— μ”λ‹ˆλ‹€.
24
- pdf_loader = PyPDFLoader(temp_filepath) # PyPDFLoaderλ₯Ό μ‚¬μš©ν•΄ PDFλ₯Ό λ‘œλ“œν•©λ‹ˆλ‹€.
25
- pdf_doc = pdf_loader.load() # ν…μŠ€νŠΈλ₯Ό μΆ”μΆœν•©λ‹ˆλ‹€.
26
- return pdf_doc # μΆ”μΆœν•œ ν…μŠ€νŠΈλ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.
27
-
28
- # 과제
29
- # μ•„λž˜ ν…μŠ€νŠΈ μΆ”μΆœ ν•¨μˆ˜λ₯Ό μž‘μ„±
30
-
31
- def get_text_file(docs):
32
- pass
33
-
34
-
35
- def get_csv_file(docs):
36
- pass
37
-
38
- def get_json_file(docs):
39
- pass
40
-
41
-
42
- # λ¬Έμ„œλ“€μ„ μ²˜λ¦¬ν•˜μ—¬ ν…μŠ€νŠΈ 청크둜 λ‚˜λˆ„λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
43
- def get_text_chunks(documents):
44
- text_splitter = RecursiveCharacterTextSplitter(
45
- chunk_size=1000, # 청크의 크기λ₯Ό μ§€μ •ν•©λ‹ˆλ‹€.
46
- chunk_overlap=200, # 청크 μ‚¬μ΄μ˜ 쀑볡을 μ§€μ •ν•©λ‹ˆλ‹€.
47
- length_function=len # ν…μŠ€νŠΈμ˜ 길이λ₯Ό μΈ‘μ •ν•˜λŠ” ν•¨μˆ˜λ₯Ό μ§€μ •ν•©λ‹ˆλ‹€.
48
- )
49
-
50
- documents = text_splitter.split_documents(documents) # λ¬Έμ„œλ“€μ„ 청크둜 λ‚˜λˆ•λ‹ˆλ‹€
51
- return documents # λ‚˜λˆˆ 청크λ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.
52
-
53
-
54
- # ν…μŠ€νŠΈ μ²­ν¬λ“€λ‘œλΆ€ν„° 벑터 μŠ€ν† μ–΄λ₯Ό μƒμ„±ν•˜λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
55
- def get_vectorstore(text_chunks):
56
- # OpenAI μž„λ² λ”© λͺ¨λΈμ„ λ‘œλ“œν•©λ‹ˆλ‹€. (Embedding models - Ada v2)
57
-
58
- embeddings = OpenAIEmbeddings()
59
- vectorstore = FAISS.from_documents(text_chunks, embeddings) # FAISS 벑터 μŠ€ν† μ–΄λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
60
-
61
- return vectorstore # μƒμ„±λœ 벑터 μŠ€ν† μ–΄λ₯Ό λ°˜ν™˜ν•©λ‹ˆλ‹€.
62
-
63
-
64
- def get_conversation_chain(vectorstore):
65
- gpt_model_name = 'gpt-3.5-turbo'
66
- llm = ChatOpenAI(model_name = gpt_model_name) #gpt-3.5 λͺ¨λΈ λ‘œλ“œ
67
-
68
- # λŒ€ν™” 기둝을 μ €μž₯ν•˜κΈ° μœ„ν•œ λ©”λͺ¨λ¦¬λ₯Ό μƒμ„±ν•©λ‹ˆλ‹€.
69
- memory = ConversationBufferMemory(
70
- memory_key='chat_history', return_messages=True)
71
- # λŒ€ν™” 검색 체인을 μƒμ„±ν•©λ‹ˆλ‹€.
72
- conversation_chain = ConversationalRetrievalChain.from_llm(
73
- llm=llm,
74
- retriever=vectorstore.as_retriever(),
75
- memory=memory
76
- )
77
- return conversation_chain
78
-
79
- # μ‚¬μš©μž μž…λ ₯을 μ²˜λ¦¬ν•˜λŠ” ν•¨μˆ˜μž…λ‹ˆλ‹€.
80
- def handle_userinput(user_question):
81
- # λŒ€ν™” 체인을 μ‚¬μš©ν•˜μ—¬ μ‚¬μš©μž μ§ˆλ¬Έμ— λŒ€ν•œ 응닡을 μƒμ„±ν•©λ‹ˆλ‹€.
82
- response = st.session_state.conversation({'question': user_question})
83
- # λŒ€ν™” 기둝을 μ €μž₯ν•©λ‹ˆλ‹€.
84
- st.session_state.chat_history = response['chat_history']
85
-
86
- for i, message in enumerate(st.session_state.chat_history):
87
- if i % 2 == 0:
88
- st.write(user_template.replace(
89
- "{{MSG}}", message.content), unsafe_allow_html=True)
90
- else:
91
- st.write(bot_template.replace(
92
- "{{MSG}}", message.content), unsafe_allow_html=True)
93
-
94
-
95
- def main():
96
- load_dotenv()
97
- st.set_page_config(page_title="Chat with multiple Files",
98
- page_icon=":books:")
99
- st.write(css, unsafe_allow_html=True)
100
-
101
- if "conversation" not in st.session_state:
102
- st.session_state.conversation = None
103
- if "chat_history" not in st.session_state:
104
- st.session_state.chat_history = None
105
-
106
- st.header("Chat with multiple Files :")
107
- user_question = st.text_input("Ask a question about your documents:")
108
- if user_question:
109
- handle_userinput(user_question)
110
-
111
- with st.sidebar:
112
- openai_key = st.text_input("Paste your OpenAI API key (sk-...)")
113
- if openai_key:
114
- os.environ["OPENAI_API_KEY"] = openai_key
115
-
116
- st.subheader("Your documents")
117
- docs = st.file_uploader(
118
- "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
119
- if st.button("Process"):
120
- with st.spinner("Processing"):
121
- # get pdf text
122
- doc_list = []
123
-
124
- for file in docs:
125
- print('file - type : ', file.type)
126
- if file.type == 'text/plain':
127
- # file is .txt
128
- doc_list.extend(get_text_file(file))
129
- elif file.type in ['application/octet-stream', 'application/pdf']:
130
- # file is .pdf
131
- doc_list.extend(get_pdf_text(file))
132
- elif file.type == 'text/csv':
133
- # file is .csv
134
- doc_list.extend(get_csv_file(file))
135
- elif file.type == 'application/json':
136
- # file is .json
137
- doc_list.extend(get_json_file(file))
138
-
139
- # get the text chunks
140
- text_chunks = get_text_chunks(doc_list)
141
-
142
- # create vector store
143
- vectorstore = get_vectorstore(text_chunks)
144
-
145
- # create conversation chain
146
- st.session_state.conversation = get_conversation_chain(
147
- vectorstore)
148
-
149
-
150
- if __name__ == '__main__':
151
- main()