timmCAM / app.py
rwightman's picture
rwightman HF staff
Create app.py
147fbb0 verified
raw
history blame
4.28 kB
import gradio as gr
import timm
import torch
from PIL import Image
import requests
from io import BytesIO
import numpy as np
from pytorch_grad_cam import GradCAM, HiResCAM, ScoreCAM, GradCAMPlusPlus, AblationCAM, XGradCAM, EigenCAM, FullGrad
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget, get_target_layer
from pytorch_grad_cam.utils.image import show_cam_on_image
from timm.data import create_transform
# List of available timm models
MODELS = timm.list_models()
# List of available GradCAM methods
CAM_METHODS = {
"GradCAM": GradCAM,
"HiResCAM": HiResCAM,
"ScoreCAM": ScoreCAM,
"GradCAM++": GradCAMPlusPlus,
"AblationCAM": AblationCAM,
"XGradCAM": XGradCAM,
"EigenCAM": EigenCAM,
"FullGrad": FullGrad
}
def load_model(model_name):
model = timm.create_model(model_name, pretrained=True)
model.eval()
return model
def process_image(image_path, model):
if image_path.startswith('http'):
response = requests.get(image_path)
image = Image.open(BytesIO(response.content))
else:
image = Image.open(image_path)
config = model.pretrained_cfg
transform = create_transform(
input_size=config['input_size'],
crop_pct=config['crop_pct'],
mean=config['mean'],
std=config['std'],
interpolation=config['interpolation'],
is_training=False
)
tensor = transform(image).unsqueeze(0)
return tensor
def get_cam_image(model, image, target_layer, cam_method):
cam = CAM_METHODS[cam_method](model=model, target_layers=[target_layer], use_cuda=torch.cuda.is_available())
grayscale_cam = cam(input_tensor=image)
config = model.pretrained_cfg
mean = torch.tensor(config['mean']).view(3, 1, 1)
std = torch.tensor(config['std']).view(3, 1, 1)
rgb_img = (image.squeeze(0) * std + mean).permute(1, 2, 0).cpu().numpy()
rgb_img = np.clip(rgb_img, 0, 1)
cam_image = show_cam_on_image(rgb_img, grayscale_cam[0, :], use_rgb=True)
return Image.fromarray(cam_image)
def get_feature_info(model):
if hasattr(model, 'feature_info'):
return [f['module'] for f in model.feature_info]
else:
return []
def explain_image(model_name, image_path, cam_method, feature_module):
model = load_model(model_name)
image = process_image(image_path, model)
if feature_module:
target_layer = get_target_layer(model, feature_module)
print(f"Using feature module: {feature_module}")
else:
# Fallback to the last feature module or last convolutional layer
feature_info = get_feature_info(model)
if feature_info:
target_layer = get_target_layer(model, feature_info[-1])
print(f"Using last feature module: {feature_info[-1]}")
else:
# Fallback to finding last convolutional layer
for name, module in reversed(list(model.named_modules())):
if isinstance(module, torch.nn.Conv2d):
target_layer = module
print(f"Fallback: Using last convolutional layer: {name}")
break
if target_layer is None:
raise ValueError("Could not find a suitable target layer.")
cam_image = get_cam_image(model, image, target_layer, cam_method)
return cam_image
def update_feature_modules(model_name):
model = load_model(model_name)
feature_modules = get_feature_info(model)
return gr.Dropdown.update(choices=feature_modules, value=feature_modules[-1] if feature_modules else None)
iface = gr.Interface(
fn=explain_image,
inputs=[
gr.Dropdown(choices=MODELS, label="Select Model"),
gr.Image(type="filepath", label="Upload Image"),
gr.Dropdown(choices=list(CAM_METHODS.keys()), label="Select CAM Method"),
gr.Dropdown(label="Select Feature Module (optional)")
],
outputs=gr.Image(type="pil", label="Explained Image"),
title="Explainable AI with timm models",
description="Upload an image, select a model, CAM method, and optionally a specific feature module to visualize the explanation.",
allow_flagging="never"
)
iface.load(update_feature_modules, inputs=[iface.inputs[0]], outputs=[iface.inputs[3]])
iface.launch()