Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
# Load the model (use a fine-tuned model for abuse detection) | |
classifier = pipeline("text-classification", model="unitary/toxic-bert") | |
def analyze_text(text): | |
results = classifier(text) | |
# Convert to readable format | |
final_result = { | |
"bullying": any(res["label"] == "toxic" and res["score"] > 0.5 for res in results), | |
"threat": any(res["label"] == "threat" and res["score"] > 0.5 for res in results), | |
"scolding": any(res["label"] == "insult" and res["score"] > 0.5 for res in results), | |
"abuse": any(res["label"] in ["toxic", "severe_toxic"] and res["score"] > 0.6 for res in results), | |
"detailed_scores": results | |
} | |
# Make detected categories bold | |
for key in ["bullying", "threat", "scolding", "abuse"]: | |
if final_result[key]: | |
final_result[key] = f"**{key.upper()} DETECTED**" | |
return final_result | |