Spaces:
Running
on
T4
Running
on
T4
import argparse, os, sys, glob | |
import clip | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
from omegaconf import OmegaConf | |
from PIL import Image | |
from tqdm import tqdm, trange | |
from itertools import islice | |
from einops import rearrange, repeat | |
from torchvision.utils import make_grid | |
import scann | |
import time | |
from multiprocessing import cpu_count | |
from ldm.util import instantiate_from_config, parallel_data_prefetch | |
from ldm.models.diffusion.ddim import DDIMSampler | |
from ldm.models.diffusion.plms import PLMSSampler | |
from ldm.modules.encoders.modules import FrozenClipImageEmbedder, FrozenCLIPTextEmbedder | |
DATABASES = [ | |
"openimages", | |
"artbench-art_nouveau", | |
"artbench-baroque", | |
"artbench-expressionism", | |
"artbench-impressionism", | |
"artbench-post_impressionism", | |
"artbench-realism", | |
"artbench-romanticism", | |
"artbench-renaissance", | |
"artbench-surrealism", | |
"artbench-ukiyo_e", | |
] | |
def chunk(it, size): | |
it = iter(it) | |
return iter(lambda: tuple(islice(it, size)), ()) | |
def load_model_from_config(config, ckpt, verbose=False): | |
print(f"Loading model from {ckpt}") | |
pl_sd = torch.load(ckpt, map_location="cpu") | |
if "global_step" in pl_sd: | |
print(f"Global Step: {pl_sd['global_step']}") | |
sd = pl_sd["state_dict"] | |
model = instantiate_from_config(config.model) | |
m, u = model.load_state_dict(sd, strict=False) | |
if len(m) > 0 and verbose: | |
print("missing keys:") | |
print(m) | |
if len(u) > 0 and verbose: | |
print("unexpected keys:") | |
print(u) | |
model.cuda() | |
model.eval() | |
return model | |
class Searcher(object): | |
def __init__(self, database, retriever_version='ViT-L/14'): | |
assert database in DATABASES | |
# self.database = self.load_database(database) | |
self.database_name = database | |
self.searcher_savedir = f'data/rdm/searchers/{self.database_name}' | |
self.database_path = f'data/rdm/retrieval_databases/{self.database_name}' | |
self.retriever = self.load_retriever(version=retriever_version) | |
self.database = {'embedding': [], | |
'img_id': [], | |
'patch_coords': []} | |
self.load_database() | |
self.load_searcher() | |
def train_searcher(self, k, | |
metric='dot_product', | |
searcher_savedir=None): | |
print('Start training searcher') | |
searcher = scann.scann_ops_pybind.builder(self.database['embedding'] / | |
np.linalg.norm(self.database['embedding'], axis=1)[:, np.newaxis], | |
k, metric) | |
self.searcher = searcher.score_brute_force().build() | |
print('Finish training searcher') | |
if searcher_savedir is not None: | |
print(f'Save trained searcher under "{searcher_savedir}"') | |
os.makedirs(searcher_savedir, exist_ok=True) | |
self.searcher.serialize(searcher_savedir) | |
def load_single_file(self, saved_embeddings): | |
compressed = np.load(saved_embeddings) | |
self.database = {key: compressed[key] for key in compressed.files} | |
print('Finished loading of clip embeddings.') | |
def load_multi_files(self, data_archive): | |
out_data = {key: [] for key in self.database} | |
for d in tqdm(data_archive, desc=f'Loading datapool from {len(data_archive)} individual files.'): | |
for key in d.files: | |
out_data[key].append(d[key]) | |
return out_data | |
def load_database(self): | |
print(f'Load saved patch embedding from "{self.database_path}"') | |
file_content = glob.glob(os.path.join(self.database_path, '*.npz')) | |
if len(file_content) == 1: | |
self.load_single_file(file_content[0]) | |
elif len(file_content) > 1: | |
data = [np.load(f) for f in file_content] | |
prefetched_data = parallel_data_prefetch(self.load_multi_files, data, | |
n_proc=min(len(data), cpu_count()), target_data_type='dict') | |
self.database = {key: np.concatenate([od[key] for od in prefetched_data], axis=1)[0] for key in | |
self.database} | |
else: | |
raise ValueError(f'No npz-files in specified path "{self.database_path}" is this directory existing?') | |
print(f'Finished loading of retrieval database of length {self.database["embedding"].shape[0]}.') | |
def load_retriever(self, version='ViT-L/14', ): | |
model = FrozenClipImageEmbedder(model=version) | |
if torch.cuda.is_available(): | |
model.cuda() | |
model.eval() | |
return model | |
def load_searcher(self): | |
print(f'load searcher for database {self.database_name} from {self.searcher_savedir}') | |
self.searcher = scann.scann_ops_pybind.load_searcher(self.searcher_savedir) | |
print('Finished loading searcher.') | |
def search(self, x, k): | |
if self.searcher is None and self.database['embedding'].shape[0] < 2e4: | |
self.train_searcher(k) # quickly fit searcher on the fly for small databases | |
assert self.searcher is not None, 'Cannot search with uninitialized searcher' | |
if isinstance(x, torch.Tensor): | |
x = x.detach().cpu().numpy() | |
if len(x.shape) == 3: | |
x = x[:, 0] | |
query_embeddings = x / np.linalg.norm(x, axis=1)[:, np.newaxis] | |
start = time.time() | |
nns, distances = self.searcher.search_batched(query_embeddings, final_num_neighbors=k) | |
end = time.time() | |
out_embeddings = self.database['embedding'][nns] | |
out_img_ids = self.database['img_id'][nns] | |
out_pc = self.database['patch_coords'][nns] | |
out = {'nn_embeddings': out_embeddings / np.linalg.norm(out_embeddings, axis=-1)[..., np.newaxis], | |
'img_ids': out_img_ids, | |
'patch_coords': out_pc, | |
'queries': x, | |
'exec_time': end - start, | |
'nns': nns, | |
'q_embeddings': query_embeddings} | |
return out | |
def __call__(self, x, n): | |
return self.search(x, n) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
# TODO: add n_neighbors and modes (text-only, text-image-retrieval, image-image retrieval etc) | |
# TODO: add 'image variation' mode when knn=0 but a single image is given instead of a text prompt? | |
parser.add_argument( | |
"--prompt", | |
type=str, | |
nargs="?", | |
default="a painting of a virus monster playing guitar", | |
help="the prompt to render" | |
) | |
parser.add_argument( | |
"--outdir", | |
type=str, | |
nargs="?", | |
help="dir to write results to", | |
default="outputs/txt2img-samples" | |
) | |
parser.add_argument( | |
"--skip_grid", | |
action='store_true', | |
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples", | |
) | |
parser.add_argument( | |
"--ddim_steps", | |
type=int, | |
default=50, | |
help="number of ddim sampling steps", | |
) | |
parser.add_argument( | |
"--n_repeat", | |
type=int, | |
default=1, | |
help="number of repeats in CLIP latent space", | |
) | |
parser.add_argument( | |
"--plms", | |
action='store_true', | |
help="use plms sampling", | |
) | |
parser.add_argument( | |
"--ddim_eta", | |
type=float, | |
default=0.0, | |
help="ddim eta (eta=0.0 corresponds to deterministic sampling", | |
) | |
parser.add_argument( | |
"--n_iter", | |
type=int, | |
default=1, | |
help="sample this often", | |
) | |
parser.add_argument( | |
"--H", | |
type=int, | |
default=768, | |
help="image height, in pixel space", | |
) | |
parser.add_argument( | |
"--W", | |
type=int, | |
default=768, | |
help="image width, in pixel space", | |
) | |
parser.add_argument( | |
"--n_samples", | |
type=int, | |
default=3, | |
help="how many samples to produce for each given prompt. A.k.a batch size", | |
) | |
parser.add_argument( | |
"--n_rows", | |
type=int, | |
default=0, | |
help="rows in the grid (default: n_samples)", | |
) | |
parser.add_argument( | |
"--scale", | |
type=float, | |
default=5.0, | |
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", | |
) | |
parser.add_argument( | |
"--from-file", | |
type=str, | |
help="if specified, load prompts from this file", | |
) | |
parser.add_argument( | |
"--config", | |
type=str, | |
default="configs/retrieval-augmented-diffusion/768x768.yaml", | |
help="path to config which constructs model", | |
) | |
parser.add_argument( | |
"--ckpt", | |
type=str, | |
default="models/rdm/rdm768x768/model.ckpt", | |
help="path to checkpoint of model", | |
) | |
parser.add_argument( | |
"--clip_type", | |
type=str, | |
default="ViT-L/14", | |
help="which CLIP model to use for retrieval and NN encoding", | |
) | |
parser.add_argument( | |
"--database", | |
type=str, | |
default='artbench-surrealism', | |
choices=DATABASES, | |
help="The database used for the search, only applied when --use_neighbors=True", | |
) | |
parser.add_argument( | |
"--use_neighbors", | |
default=False, | |
action='store_true', | |
help="Include neighbors in addition to text prompt for conditioning", | |
) | |
parser.add_argument( | |
"--knn", | |
default=10, | |
type=int, | |
help="The number of included neighbors, only applied when --use_neighbors=True", | |
) | |
opt = parser.parse_args() | |
config = OmegaConf.load(f"{opt.config}") | |
model = load_model_from_config(config, f"{opt.ckpt}") | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
model = model.to(device) | |
clip_text_encoder = FrozenCLIPTextEmbedder(opt.clip_type).to(device) | |
if opt.plms: | |
sampler = PLMSSampler(model) | |
else: | |
sampler = DDIMSampler(model) | |
os.makedirs(opt.outdir, exist_ok=True) | |
outpath = opt.outdir | |
batch_size = opt.n_samples | |
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size | |
if not opt.from_file: | |
prompt = opt.prompt | |
assert prompt is not None | |
data = [batch_size * [prompt]] | |
else: | |
print(f"reading prompts from {opt.from_file}") | |
with open(opt.from_file, "r") as f: | |
data = f.read().splitlines() | |
data = list(chunk(data, batch_size)) | |
sample_path = os.path.join(outpath, "samples") | |
os.makedirs(sample_path, exist_ok=True) | |
base_count = len(os.listdir(sample_path)) | |
grid_count = len(os.listdir(outpath)) - 1 | |
print(f"sampling scale for cfg is {opt.scale:.2f}") | |
searcher = None | |
if opt.use_neighbors: | |
searcher = Searcher(opt.database) | |
with torch.no_grad(): | |
with model.ema_scope(): | |
for n in trange(opt.n_iter, desc="Sampling"): | |
all_samples = list() | |
for prompts in tqdm(data, desc="data"): | |
print("sampling prompts:", prompts) | |
if isinstance(prompts, tuple): | |
prompts = list(prompts) | |
c = clip_text_encoder.encode(prompts) | |
uc = None | |
if searcher is not None: | |
nn_dict = searcher(c, opt.knn) | |
c = torch.cat([c, torch.from_numpy(nn_dict['nn_embeddings']).cuda()], dim=1) | |
if opt.scale != 1.0: | |
uc = torch.zeros_like(c) | |
if isinstance(prompts, tuple): | |
prompts = list(prompts) | |
shape = [16, opt.H // 16, opt.W // 16] # note: currently hardcoded for f16 model | |
samples_ddim, _ = sampler.sample(S=opt.ddim_steps, | |
conditioning=c, | |
batch_size=c.shape[0], | |
shape=shape, | |
verbose=False, | |
unconditional_guidance_scale=opt.scale, | |
unconditional_conditioning=uc, | |
eta=opt.ddim_eta, | |
) | |
x_samples_ddim = model.decode_first_stage(samples_ddim) | |
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) | |
for x_sample in x_samples_ddim: | |
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') | |
Image.fromarray(x_sample.astype(np.uint8)).save( | |
os.path.join(sample_path, f"{base_count:05}.png")) | |
base_count += 1 | |
all_samples.append(x_samples_ddim) | |
if not opt.skip_grid: | |
# additionally, save as grid | |
grid = torch.stack(all_samples, 0) | |
grid = rearrange(grid, 'n b c h w -> (n b) c h w') | |
grid = make_grid(grid, nrow=n_rows) | |
# to image | |
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() | |
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png')) | |
grid_count += 1 | |
print(f"Your samples are ready and waiting for you here: \n{outpath} \nEnjoy.") | |