Spaces:
Sleeping
Sleeping
Update courses.py
Browse files- courses.py +9 -16
courses.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
from sentence_transformers import SentenceTransformer
|
| 3 |
import numpy as np
|
| 4 |
|
|
@@ -21,15 +20,21 @@ courses = [
|
|
| 21 |
]
|
| 22 |
|
| 23 |
course_texts = [course["title"] + " " + course["description"] + " " + course["curriculum"] for course in courses]
|
| 24 |
-
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
course_embeddings = model.encode(course_texts)
|
| 27 |
|
| 28 |
def search_courses(query):
|
| 29 |
query_embedding = model.encode([query])[0]
|
| 30 |
similarities = np.dot(course_embeddings, query_embedding)
|
| 31 |
sorted_course_indices = np.argsort(similarities)[::-1]
|
| 32 |
-
|
| 33 |
results = []
|
| 34 |
for idx in sorted_course_indices[:3]: # Top 3 results
|
| 35 |
results.append({
|
|
@@ -37,18 +42,6 @@ def search_courses(query):
|
|
| 37 |
"description": courses[idx]["description"],
|
| 38 |
"curriculum": courses[idx]["curriculum"]
|
| 39 |
})
|
| 40 |
-
|
| 41 |
-
return results
|
| 42 |
-
|
| 43 |
-
def gradio_search(query):
|
| 44 |
-
results = search_courses(query)
|
| 45 |
-
output = ""
|
| 46 |
-
for result in results:
|
| 47 |
-
output += f"**Title**: {result['title']}\n"
|
| 48 |
-
output += f"**Description**: {result['description']}\n"
|
| 49 |
-
output += f"**Curriculum**: {result['curriculum']}\n\n"
|
| 50 |
-
return output
|
| 51 |
-
interface = gr.Interface(fn=gradio_search, inputs="text", outputs="markdown", title="Smart Course Search", description="Find the most relevant free courses from Analytics Vidhya.")
|
| 52 |
|
|
|
|
| 53 |
|
| 54 |
-
interface.launch()
|
|
|
|
|
|
|
| 1 |
from sentence_transformers import SentenceTransformer
|
| 2 |
import numpy as np
|
| 3 |
|
|
|
|
| 20 |
]
|
| 21 |
|
| 22 |
course_texts = [course["title"] + " " + course["description"] + " " + course["curriculum"] for course in courses]
|
|
|
|
| 23 |
|
| 24 |
+
# Load the model with a fallback option
|
| 25 |
+
try:
|
| 26 |
+
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
| 27 |
+
except:
|
| 28 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 29 |
+
|
| 30 |
+
# Encode the course texts
|
| 31 |
course_embeddings = model.encode(course_texts)
|
| 32 |
|
| 33 |
def search_courses(query):
|
| 34 |
query_embedding = model.encode([query])[0]
|
| 35 |
similarities = np.dot(course_embeddings, query_embedding)
|
| 36 |
sorted_course_indices = np.argsort(similarities)[::-1]
|
| 37 |
+
|
| 38 |
results = []
|
| 39 |
for idx in sorted_course_indices[:3]: # Top 3 results
|
| 40 |
results.append({
|
|
|
|
| 42 |
"description": courses[idx]["description"],
|
| 43 |
"curriculum": courses[idx]["curriculum"]
|
| 44 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
return results
|
| 47 |
|
|
|