|
|
|
|
|
|
|
|
|
import argparse |
|
import os |
|
import time |
|
|
|
import cv2 |
|
import megengine as mge |
|
import megengine.functional as F |
|
from loguru import logger |
|
|
|
from yolox.data.datasets import COCO_CLASSES |
|
from yolox.utils import vis |
|
from yolox.data.data_augment import preproc as preprocess |
|
|
|
from build import build_and_load |
|
|
|
IMAGE_EXT = [".jpg", ".jpeg", ".webp", ".bmp", ".png"] |
|
|
|
|
|
def make_parser(): |
|
parser = argparse.ArgumentParser("YOLOX Demo!") |
|
parser.add_argument( |
|
"demo", default="image", help="demo type, eg. image, video and webcam" |
|
) |
|
parser.add_argument("-n", "--name", type=str, default="yolox-s", help="model name") |
|
parser.add_argument("--path", default="./test.png", help="path to images or video") |
|
parser.add_argument("--camid", type=int, default=0, help="webcam demo camera id") |
|
parser.add_argument( |
|
"--save_result", |
|
action="store_true", |
|
help="whether to save the inference result of image/video", |
|
) |
|
|
|
parser.add_argument("-c", "--ckpt", default=None, type=str, help="ckpt for eval") |
|
parser.add_argument("--conf", default=None, type=float, help="test conf") |
|
parser.add_argument("--nms", default=None, type=float, help="test nms threshold") |
|
parser.add_argument("--tsize", default=None, type=int, help="test img size") |
|
return parser |
|
|
|
|
|
def get_image_list(path): |
|
image_names = [] |
|
for maindir, subdir, file_name_list in os.walk(path): |
|
for filename in file_name_list: |
|
apath = os.path.join(maindir, filename) |
|
ext = os.path.splitext(apath)[1] |
|
if ext in IMAGE_EXT: |
|
image_names.append(apath) |
|
return image_names |
|
|
|
|
|
def postprocess(prediction, num_classes, conf_thre=0.7, nms_thre=0.45): |
|
box_corner = F.zeros_like(prediction) |
|
box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2 |
|
box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2 |
|
box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2 |
|
box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2 |
|
prediction[:, :, :4] = box_corner[:, :, :4] |
|
|
|
output = [None for _ in range(len(prediction))] |
|
for i, image_pred in enumerate(prediction): |
|
|
|
|
|
if not image_pred.shape[0]: |
|
continue |
|
|
|
class_conf = F.max(image_pred[:, 5: 5 + num_classes], 1, keepdims=True) |
|
class_pred = F.argmax(image_pred[:, 5: 5 + num_classes], 1, keepdims=True) |
|
|
|
class_conf_squeeze = F.squeeze(class_conf) |
|
conf_mask = image_pred[:, 4] * class_conf_squeeze >= conf_thre |
|
detections = F.concat((image_pred[:, :5], class_conf, class_pred), 1) |
|
detections = detections[conf_mask] |
|
if not detections.shape[0]: |
|
continue |
|
|
|
nms_out_index = F.vision.nms( |
|
detections[:, :4], detections[:, 4] * detections[:, 5], nms_thre, |
|
) |
|
detections = detections[nms_out_index] |
|
if output[i] is None: |
|
output[i] = detections |
|
else: |
|
output[i] = F.concat((output[i], detections)) |
|
|
|
return output |
|
|
|
|
|
class Predictor(object): |
|
def __init__( |
|
self, |
|
model, |
|
confthre=0.01, |
|
nmsthre=0.65, |
|
test_size=(640, 640), |
|
cls_names=COCO_CLASSES, |
|
trt_file=None, |
|
decoder=None, |
|
): |
|
self.model = model |
|
self.cls_names = cls_names |
|
self.decoder = decoder |
|
self.num_classes = 80 |
|
self.confthre = confthre |
|
self.nmsthre = nmsthre |
|
self.test_size = test_size |
|
|
|
def inference(self, img): |
|
img_info = {"id": 0} |
|
if isinstance(img, str): |
|
img_info["file_name"] = os.path.basename(img) |
|
img = cv2.imread(img) |
|
if img is None: |
|
raise ValueError("test image path is invalid!") |
|
else: |
|
img_info["file_name"] = None |
|
|
|
height, width = img.shape[:2] |
|
img_info["height"] = height |
|
img_info["width"] = width |
|
img_info["raw_img"] = img |
|
|
|
img, ratio = preprocess(img, self.test_size) |
|
img_info["ratio"] = ratio |
|
img = F.expand_dims(mge.tensor(img), 0) |
|
|
|
t0 = time.time() |
|
outputs = self.model(img) |
|
outputs = postprocess(outputs, self.num_classes, self.confthre, self.nmsthre) |
|
logger.info("Infer time: {:.4f}s".format(time.time() - t0)) |
|
return outputs, img_info |
|
|
|
def visual(self, output, img_info, cls_conf=0.35): |
|
ratio = img_info["ratio"] |
|
img = img_info["raw_img"] |
|
if output is None: |
|
return img |
|
output = output.numpy() |
|
|
|
|
|
bboxes = output[:, 0:4] / ratio |
|
|
|
cls = output[:, 6] |
|
scores = output[:, 4] * output[:, 5] |
|
|
|
vis_res = vis(img, bboxes, scores, cls, cls_conf, self.cls_names) |
|
return vis_res |
|
|
|
|
|
def image_demo(predictor, vis_folder, path, current_time, save_result): |
|
if os.path.isdir(path): |
|
files = get_image_list(path) |
|
else: |
|
files = [path] |
|
files.sort() |
|
for image_name in files: |
|
outputs, img_info = predictor.inference(image_name) |
|
result_image = predictor.visual(outputs[0], img_info) |
|
if save_result: |
|
save_folder = os.path.join( |
|
vis_folder, time.strftime("%Y_%m_%d_%H_%M_%S", current_time) |
|
) |
|
os.makedirs(save_folder, exist_ok=True) |
|
save_file_name = os.path.join(save_folder, os.path.basename(image_name)) |
|
logger.info("Saving detection result in {}".format(save_file_name)) |
|
cv2.imwrite(save_file_name, result_image) |
|
ch = cv2.waitKey(0) |
|
if ch == 27 or ch == ord("q") or ch == ord("Q"): |
|
break |
|
|
|
|
|
def imageflow_demo(predictor, vis_folder, current_time, args): |
|
cap = cv2.VideoCapture(args.path if args.demo == "video" else args.camid) |
|
width = cap.get(cv2.CAP_PROP_FRAME_WIDTH) |
|
height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) |
|
fps = cap.get(cv2.CAP_PROP_FPS) |
|
save_folder = os.path.join( |
|
vis_folder, time.strftime("%Y_%m_%d_%H_%M_%S", current_time) |
|
) |
|
os.makedirs(save_folder, exist_ok=True) |
|
if args.demo == "video": |
|
save_path = os.path.join(save_folder, os.path.basename(args.path)) |
|
else: |
|
save_path = os.path.join(save_folder, "camera.mp4") |
|
logger.info(f"video save_path is {save_path}") |
|
vid_writer = cv2.VideoWriter( |
|
save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (int(width), int(height)) |
|
) |
|
while True: |
|
ret_val, frame = cap.read() |
|
if ret_val: |
|
outputs, img_info = predictor.inference(frame) |
|
result_frame = predictor.visual(outputs[0], img_info) |
|
if args.save_result: |
|
vid_writer.write(result_frame) |
|
ch = cv2.waitKey(1) |
|
if ch == 27 or ch == ord("q") or ch == ord("Q"): |
|
break |
|
else: |
|
break |
|
|
|
|
|
def main(args): |
|
file_name = os.path.join("./yolox_outputs", args.name) |
|
os.makedirs(file_name, exist_ok=True) |
|
|
|
if args.save_result: |
|
vis_folder = os.path.join(file_name, "vis_res") |
|
os.makedirs(vis_folder, exist_ok=True) |
|
|
|
confthre = 0.01 |
|
nmsthre = 0.65 |
|
test_size = (640, 640) |
|
if args.conf is not None: |
|
confthre = args.conf |
|
if args.nms is not None: |
|
nmsthre = args.nms |
|
if args.tsize is not None: |
|
test_size = (args.tsize, args.tsize) |
|
|
|
model = build_and_load(args.ckpt, name=args.name) |
|
model.eval() |
|
|
|
predictor = Predictor(model, confthre, nmsthre, test_size, COCO_CLASSES, None, None) |
|
current_time = time.localtime() |
|
if args.demo == "image": |
|
image_demo(predictor, vis_folder, args.path, current_time, args.save_result) |
|
elif args.demo == "video" or args.demo == "webcam": |
|
imageflow_demo(predictor, vis_folder, current_time, args) |
|
|
|
|
|
if __name__ == "__main__": |
|
args = make_parser().parse_args() |
|
main(args) |
|
|