|
|
|
|
|
|
|
#include "megbrain/gopt/inference.h" |
|
#include "megbrain/opr/search_policy/algo_chooser_helper.h" |
|
#include "megbrain/serialization/serializer.h" |
|
#include <iostream> |
|
#include <iterator> |
|
#include <memory> |
|
#include <opencv2/opencv.hpp> |
|
#include <stdlib.h> |
|
#include <string> |
|
#include <vector> |
|
|
|
|
|
|
|
|
|
#define NMS_THRESH 0.45 |
|
#define BBOX_CONF_THRESH 0.25 |
|
|
|
constexpr int INPUT_W = 640; |
|
constexpr int INPUT_H = 640; |
|
|
|
using namespace mgb; |
|
|
|
cv::Mat static_resize(cv::Mat &img) { |
|
float r = std::min(INPUT_W / (img.cols * 1.0), INPUT_H / (img.rows * 1.0)); |
|
int unpad_w = r * img.cols; |
|
int unpad_h = r * img.rows; |
|
cv::Mat re(unpad_h, unpad_w, CV_8UC3); |
|
cv::resize(img, re, re.size()); |
|
cv::Mat out(INPUT_W, INPUT_H, CV_8UC3, cv::Scalar(114, 114, 114)); |
|
re.copyTo(out(cv::Rect(0, 0, re.cols, re.rows))); |
|
return out; |
|
} |
|
|
|
void blobFromImage(cv::Mat &img, float *blob_data) { |
|
cv::cvtColor(img, img, cv::COLOR_BGR2RGB); |
|
int channels = 3; |
|
int img_h = img.rows; |
|
int img_w = img.cols; |
|
std::vector<float> mean = {0.485, 0.456, 0.406}; |
|
std::vector<float> std = {0.229, 0.224, 0.225}; |
|
for (size_t c = 0; c < channels; c++) { |
|
for (size_t h = 0; h < img_h; h++) { |
|
for (size_t w = 0; w < img_w; w++) { |
|
blob_data[c * img_w * img_h + h * img_w + w] = |
|
(((float)img.at<cv::Vec3b>(h, w)[c]) / 255.0f - mean[c]) / std[c]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
struct Object { |
|
cv::Rect_<float> rect; |
|
int label; |
|
float prob; |
|
}; |
|
|
|
struct GridAndStride { |
|
int grid0; |
|
int grid1; |
|
int stride; |
|
}; |
|
|
|
static void |
|
generate_grids_and_stride(const int target_size, std::vector<int> &strides, |
|
std::vector<GridAndStride> &grid_strides) { |
|
for (auto stride : strides) { |
|
int num_grid = target_size / stride; |
|
for (int g1 = 0; g1 < num_grid; g1++) { |
|
for (int g0 = 0; g0 < num_grid; g0++) { |
|
grid_strides.push_back((GridAndStride){g0, g1, stride}); |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void generate_yolox_proposals(std::vector<GridAndStride> grid_strides, |
|
const float *feat_ptr, |
|
float prob_threshold, |
|
std::vector<Object> &objects) { |
|
const int num_class = 80; |
|
const int num_anchors = grid_strides.size(); |
|
|
|
for (int anchor_idx = 0; anchor_idx < num_anchors; anchor_idx++) { |
|
const int grid0 = grid_strides[anchor_idx].grid0; |
|
const int grid1 = grid_strides[anchor_idx].grid1; |
|
const int stride = grid_strides[anchor_idx].stride; |
|
|
|
const int basic_pos = anchor_idx * 85; |
|
|
|
float x_center = (feat_ptr[basic_pos + 0] + grid0) * stride; |
|
float y_center = (feat_ptr[basic_pos + 1] + grid1) * stride; |
|
float w = exp(feat_ptr[basic_pos + 2]) * stride; |
|
float h = exp(feat_ptr[basic_pos + 3]) * stride; |
|
float x0 = x_center - w * 0.5f; |
|
float y0 = y_center - h * 0.5f; |
|
|
|
float box_objectness = feat_ptr[basic_pos + 4]; |
|
for (int class_idx = 0; class_idx < num_class; class_idx++) { |
|
float box_cls_score = feat_ptr[basic_pos + 5 + class_idx]; |
|
float box_prob = box_objectness * box_cls_score; |
|
if (box_prob > prob_threshold) { |
|
Object obj; |
|
obj.rect.x = x0; |
|
obj.rect.y = y0; |
|
obj.rect.width = w; |
|
obj.rect.height = h; |
|
obj.label = class_idx; |
|
obj.prob = box_prob; |
|
|
|
objects.push_back(obj); |
|
} |
|
|
|
} |
|
|
|
} |
|
} |
|
|
|
static inline float intersection_area(const Object &a, const Object &b) { |
|
cv::Rect_<float> inter = a.rect & b.rect; |
|
return inter.area(); |
|
} |
|
|
|
static void qsort_descent_inplace(std::vector<Object> &faceobjects, int left, |
|
int right) { |
|
int i = left; |
|
int j = right; |
|
float p = faceobjects[(left + right) / 2].prob; |
|
|
|
while (i <= j) { |
|
while (faceobjects[i].prob > p) |
|
i++; |
|
|
|
while (faceobjects[j].prob < p) |
|
j--; |
|
|
|
if (i <= j) { |
|
|
|
std::swap(faceobjects[i], faceobjects[j]); |
|
|
|
i++; |
|
j--; |
|
} |
|
} |
|
|
|
#pragma omp parallel sections |
|
{ |
|
#pragma omp section |
|
{ |
|
if (left < j) |
|
qsort_descent_inplace(faceobjects, left, j); |
|
} |
|
#pragma omp section |
|
{ |
|
if (i < right) |
|
qsort_descent_inplace(faceobjects, i, right); |
|
} |
|
} |
|
} |
|
|
|
static void qsort_descent_inplace(std::vector<Object> &objects) { |
|
if (objects.empty()) |
|
return; |
|
|
|
qsort_descent_inplace(objects, 0, objects.size() - 1); |
|
} |
|
|
|
static void nms_sorted_bboxes(const std::vector<Object> &faceobjects, |
|
std::vector<int> &picked, float nms_threshold) { |
|
picked.clear(); |
|
|
|
const int n = faceobjects.size(); |
|
|
|
std::vector<float> areas(n); |
|
for (int i = 0; i < n; i++) { |
|
areas[i] = faceobjects[i].rect.area(); |
|
} |
|
|
|
for (int i = 0; i < n; i++) { |
|
const Object &a = faceobjects[i]; |
|
|
|
int keep = 1; |
|
for (int j = 0; j < (int)picked.size(); j++) { |
|
const Object &b = faceobjects[picked[j]]; |
|
|
|
|
|
float inter_area = intersection_area(a, b); |
|
float union_area = areas[i] + areas[picked[j]] - inter_area; |
|
|
|
if (inter_area / union_area > nms_threshold) |
|
keep = 0; |
|
} |
|
|
|
if (keep) |
|
picked.push_back(i); |
|
} |
|
} |
|
|
|
static void decode_outputs(const float *prob, std::vector<Object> &objects, |
|
float scale, const int img_w, const int img_h) { |
|
std::vector<Object> proposals; |
|
std::vector<int> strides = {8, 16, 32}; |
|
std::vector<GridAndStride> grid_strides; |
|
|
|
generate_grids_and_stride(INPUT_W, strides, grid_strides); |
|
generate_yolox_proposals(grid_strides, prob, BBOX_CONF_THRESH, proposals); |
|
qsort_descent_inplace(proposals); |
|
|
|
std::vector<int> picked; |
|
nms_sorted_bboxes(proposals, picked, NMS_THRESH); |
|
int count = picked.size(); |
|
objects.resize(count); |
|
|
|
for (int i = 0; i < count; i++) { |
|
objects[i] = proposals[picked[i]]; |
|
|
|
|
|
float x0 = (objects[i].rect.x) / scale; |
|
float y0 = (objects[i].rect.y) / scale; |
|
float x1 = (objects[i].rect.x + objects[i].rect.width) / scale; |
|
float y1 = (objects[i].rect.y + objects[i].rect.height) / scale; |
|
|
|
|
|
x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f); |
|
y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f); |
|
x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f); |
|
y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f); |
|
|
|
objects[i].rect.x = x0; |
|
objects[i].rect.y = y0; |
|
objects[i].rect.width = x1 - x0; |
|
objects[i].rect.height = y1 - y0; |
|
} |
|
} |
|
|
|
const float color_list[80][3] = { |
|
{0.000, 0.447, 0.741}, {0.850, 0.325, 0.098}, {0.929, 0.694, 0.125}, |
|
{0.494, 0.184, 0.556}, {0.466, 0.674, 0.188}, {0.301, 0.745, 0.933}, |
|
{0.635, 0.078, 0.184}, {0.300, 0.300, 0.300}, {0.600, 0.600, 0.600}, |
|
{1.000, 0.000, 0.000}, {1.000, 0.500, 0.000}, {0.749, 0.749, 0.000}, |
|
{0.000, 1.000, 0.000}, {0.000, 0.000, 1.000}, {0.667, 0.000, 1.000}, |
|
{0.333, 0.333, 0.000}, {0.333, 0.667, 0.000}, {0.333, 1.000, 0.000}, |
|
{0.667, 0.333, 0.000}, {0.667, 0.667, 0.000}, {0.667, 1.000, 0.000}, |
|
{1.000, 0.333, 0.000}, {1.000, 0.667, 0.000}, {1.000, 1.000, 0.000}, |
|
{0.000, 0.333, 0.500}, {0.000, 0.667, 0.500}, {0.000, 1.000, 0.500}, |
|
{0.333, 0.000, 0.500}, {0.333, 0.333, 0.500}, {0.333, 0.667, 0.500}, |
|
{0.333, 1.000, 0.500}, {0.667, 0.000, 0.500}, {0.667, 0.333, 0.500}, |
|
{0.667, 0.667, 0.500}, {0.667, 1.000, 0.500}, {1.000, 0.000, 0.500}, |
|
{1.000, 0.333, 0.500}, {1.000, 0.667, 0.500}, {1.000, 1.000, 0.500}, |
|
{0.000, 0.333, 1.000}, {0.000, 0.667, 1.000}, {0.000, 1.000, 1.000}, |
|
{0.333, 0.000, 1.000}, {0.333, 0.333, 1.000}, {0.333, 0.667, 1.000}, |
|
{0.333, 1.000, 1.000}, {0.667, 0.000, 1.000}, {0.667, 0.333, 1.000}, |
|
{0.667, 0.667, 1.000}, {0.667, 1.000, 1.000}, {1.000, 0.000, 1.000}, |
|
{1.000, 0.333, 1.000}, {1.000, 0.667, 1.000}, {0.333, 0.000, 0.000}, |
|
{0.500, 0.000, 0.000}, {0.667, 0.000, 0.000}, {0.833, 0.000, 0.000}, |
|
{1.000, 0.000, 0.000}, {0.000, 0.167, 0.000}, {0.000, 0.333, 0.000}, |
|
{0.000, 0.500, 0.000}, {0.000, 0.667, 0.000}, {0.000, 0.833, 0.000}, |
|
{0.000, 1.000, 0.000}, {0.000, 0.000, 0.167}, {0.000, 0.000, 0.333}, |
|
{0.000, 0.000, 0.500}, {0.000, 0.000, 0.667}, {0.000, 0.000, 0.833}, |
|
{0.000, 0.000, 1.000}, {0.000, 0.000, 0.000}, {0.143, 0.143, 0.143}, |
|
{0.286, 0.286, 0.286}, {0.429, 0.429, 0.429}, {0.571, 0.571, 0.571}, |
|
{0.714, 0.714, 0.714}, {0.857, 0.857, 0.857}, {0.000, 0.447, 0.741}, |
|
{0.314, 0.717, 0.741}, {0.50, 0.5, 0}}; |
|
|
|
static void draw_objects(const cv::Mat &bgr, |
|
const std::vector<Object> &objects) { |
|
static const char *class_names[] = { |
|
"person", "bicycle", "car", |
|
"motorcycle", "airplane", "bus", |
|
"train", "truck", "boat", |
|
"traffic light", "fire hydrant", "stop sign", |
|
"parking meter", "bench", "bird", |
|
"cat", "dog", "horse", |
|
"sheep", "cow", "elephant", |
|
"bear", "zebra", "giraffe", |
|
"backpack", "umbrella", "handbag", |
|
"tie", "suitcase", "frisbee", |
|
"skis", "snowboard", "sports ball", |
|
"kite", "baseball bat", "baseball glove", |
|
"skateboard", "surfboard", "tennis racket", |
|
"bottle", "wine glass", "cup", |
|
"fork", "knife", "spoon", |
|
"bowl", "banana", "apple", |
|
"sandwich", "orange", "broccoli", |
|
"carrot", "hot dog", "pizza", |
|
"donut", "cake", "chair", |
|
"couch", "potted plant", "bed", |
|
"dining table", "toilet", "tv", |
|
"laptop", "mouse", "remote", |
|
"keyboard", "cell phone", "microwave", |
|
"oven", "toaster", "sink", |
|
"refrigerator", "book", "clock", |
|
"vase", "scissors", "teddy bear", |
|
"hair drier", "toothbrush"}; |
|
|
|
cv::Mat image = bgr.clone(); |
|
|
|
for (size_t i = 0; i < objects.size(); i++) { |
|
const Object &obj = objects[i]; |
|
|
|
fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob, |
|
obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height); |
|
|
|
cv::Scalar color = |
|
cv::Scalar(color_list[obj.label][0], color_list[obj.label][1], |
|
color_list[obj.label][2]); |
|
float c_mean = cv::mean(color)[0]; |
|
cv::Scalar txt_color; |
|
if (c_mean > 0.5) { |
|
txt_color = cv::Scalar(0, 0, 0); |
|
} else { |
|
txt_color = cv::Scalar(255, 255, 255); |
|
} |
|
|
|
cv::rectangle(image, obj.rect, color * 255, 2); |
|
|
|
char text[256]; |
|
sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100); |
|
|
|
int baseLine = 0; |
|
cv::Size label_size = |
|
cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.4, 1, &baseLine); |
|
|
|
cv::Scalar txt_bk_color = color * 0.7 * 255; |
|
|
|
int x = obj.rect.x; |
|
int y = obj.rect.y + 1; |
|
|
|
if (y > image.rows) |
|
y = image.rows; |
|
|
|
|
|
|
|
cv::rectangle( |
|
image, |
|
cv::Rect(cv::Point(x, y), |
|
cv::Size(label_size.width, label_size.height + baseLine)), |
|
txt_bk_color, -1); |
|
|
|
cv::putText(image, text, cv::Point(x, y + label_size.height), |
|
cv::FONT_HERSHEY_SIMPLEX, 0.4, txt_color, 1); |
|
} |
|
|
|
cv::imwrite("out.jpg", image); |
|
std::cout << "save output to out.jpg" << std::endl; |
|
} |
|
|
|
cg::ComputingGraph::OutputSpecItem make_callback_copy(SymbolVar dev, |
|
HostTensorND &host) { |
|
auto cb = [&host](DeviceTensorND &d) { host.copy_from(d); }; |
|
return {dev, cb}; |
|
} |
|
|
|
int main(int argc, char *argv[]) { |
|
serialization::GraphLoader::LoadConfig load_config; |
|
load_config.comp_graph = ComputingGraph::make(); |
|
auto &&graph_opt = load_config.comp_graph->options(); |
|
graph_opt.graph_opt_level = 0; |
|
|
|
if (argc != 9) { |
|
std::cout << "Usage : " << argv[0] |
|
<< " <path_to_model> <path_to_image> <device> <warmup_count> " |
|
"<thread_number> <use_fast_run> <use_weight_preprocess> " |
|
"<run_with_fp16>" |
|
<< std::endl; |
|
return EXIT_FAILURE; |
|
} |
|
|
|
const std::string input_model{argv[1]}; |
|
const std::string input_image_path{argv[2]}; |
|
const std::string device{argv[3]}; |
|
const size_t warmup_count = atoi(argv[4]); |
|
const size_t thread_number = atoi(argv[5]); |
|
const size_t use_fast_run = atoi(argv[6]); |
|
const size_t use_weight_preprocess = atoi(argv[7]); |
|
const size_t run_with_fp16 = atoi(argv[8]); |
|
|
|
if (device == "cuda") { |
|
load_config.comp_node_mapper = [](CompNode::Locator &loc) { |
|
loc.type = CompNode::DeviceType::CUDA; |
|
}; |
|
} else if (device == "cpu") { |
|
load_config.comp_node_mapper = [](CompNode::Locator &loc) { |
|
loc.type = CompNode::DeviceType::CPU; |
|
}; |
|
} else if (device == "multithread") { |
|
load_config.comp_node_mapper = [thread_number](CompNode::Locator &loc) { |
|
loc.type = CompNode::DeviceType::MULTITHREAD; |
|
loc.device = 0; |
|
loc.stream = thread_number; |
|
}; |
|
std::cout << "use " << thread_number << " thread" << std::endl; |
|
} else { |
|
std::cout << "device only support cuda or cpu or multithread" << std::endl; |
|
return EXIT_FAILURE; |
|
} |
|
|
|
if (use_weight_preprocess) { |
|
std::cout << "use weight preprocess" << std::endl; |
|
graph_opt.graph_opt.enable_weight_preprocess(); |
|
} |
|
if (run_with_fp16) { |
|
std::cout << "run with fp16" << std::endl; |
|
graph_opt.graph_opt.enable_f16_io_comp(); |
|
} |
|
|
|
if (device == "cuda") { |
|
std::cout << "choose format for cuda" << std::endl; |
|
} else { |
|
std::cout << "choose format for non-cuda" << std::endl; |
|
#if defined(__arm__) || defined(__aarch64__) |
|
if (run_with_fp16) { |
|
std::cout << "use chw format when enable fp16" << std::endl; |
|
} else { |
|
std::cout << "choose format for nchw44 for aarch64" << std::endl; |
|
graph_opt.graph_opt.enable_nchw44(); |
|
} |
|
#endif |
|
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__) |
|
|
|
#endif |
|
} |
|
|
|
std::unique_ptr<serialization::InputFile> inp_file = |
|
serialization::InputFile::make_fs(input_model.c_str()); |
|
auto loader = serialization::GraphLoader::make(std::move(inp_file)); |
|
serialization::GraphLoader::LoadResult network = |
|
loader->load(load_config, false); |
|
|
|
if (use_fast_run) { |
|
std::cout << "use fastrun" << std::endl; |
|
using S = opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy; |
|
S strategy = static_cast<S>(0); |
|
strategy = S::PROFILE | S::OPTIMIZED | strategy; |
|
mgb::gopt::modify_opr_algo_strategy_inplace(network.output_var_list, |
|
strategy); |
|
} |
|
|
|
auto data = network.tensor_map["data"]; |
|
cv::Mat image = cv::imread(input_image_path); |
|
cv::Mat pr_img = static_resize(image); |
|
float *data_ptr = data->resize({1, 3, 640, 640}).ptr<float>(); |
|
blobFromImage(pr_img, data_ptr); |
|
HostTensorND predict; |
|
std::unique_ptr<cg::AsyncExecutable> func = network.graph->compile( |
|
{make_callback_copy(network.output_var_map.begin()->second, predict)}); |
|
|
|
for (auto i = 0; i < warmup_count; i++) { |
|
std::cout << "warmup: " << i << std::endl; |
|
func->execute(); |
|
func->wait(); |
|
} |
|
auto start = std::chrono::system_clock::now(); |
|
func->execute(); |
|
func->wait(); |
|
auto end = std::chrono::system_clock::now(); |
|
std::chrono::duration<double> exec_seconds = end - start; |
|
std::cout << "elapsed time: " << exec_seconds.count() << "s" << std::endl; |
|
|
|
float *predict_ptr = predict.ptr<float>(); |
|
int img_w = image.cols; |
|
int img_h = image.rows; |
|
float scale = |
|
std::min(INPUT_W / (image.cols * 1.0), INPUT_H / (image.rows * 1.0)); |
|
std::vector<Object> objects; |
|
|
|
decode_outputs(predict_ptr, objects, scale, img_w, img_h); |
|
draw_objects(image, objects); |
|
|
|
return EXIT_SUCCESS; |
|
} |
|
|