|
#include <fstream> |
|
#include <iostream> |
|
#include <sstream> |
|
#include <numeric> |
|
#include <chrono> |
|
#include <vector> |
|
#include <opencv2/opencv.hpp> |
|
#include <dirent.h> |
|
#include "NvInfer.h" |
|
#include "cuda_runtime_api.h" |
|
#include "logging.h" |
|
|
|
#define CHECK(status) \ |
|
do\ |
|
{\ |
|
auto ret = (status);\ |
|
if (ret != 0)\ |
|
{\ |
|
std::cerr << "Cuda failure: " << ret << std::endl;\ |
|
abort();\ |
|
}\ |
|
} while (0) |
|
|
|
#define DEVICE 0 |
|
#define NMS_THRESH 0.45 |
|
#define BBOX_CONF_THRESH 0.3 |
|
|
|
using namespace nvinfer1; |
|
|
|
|
|
static const int INPUT_W = 640; |
|
static const int INPUT_H = 640; |
|
static const int NUM_CLASSES = 80; |
|
const char* INPUT_BLOB_NAME = "input_0"; |
|
const char* OUTPUT_BLOB_NAME = "output_0"; |
|
static Logger gLogger; |
|
|
|
cv::Mat static_resize(cv::Mat& img) { |
|
float r = std::min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0)); |
|
|
|
int unpad_w = r * img.cols; |
|
int unpad_h = r * img.rows; |
|
cv::Mat re(unpad_h, unpad_w, CV_8UC3); |
|
cv::resize(img, re, re.size()); |
|
cv::Mat out(INPUT_W, INPUT_H, CV_8UC3, cv::Scalar(114, 114, 114)); |
|
re.copyTo(out(cv::Rect(0, 0, re.cols, re.rows))); |
|
return out; |
|
} |
|
|
|
struct Object |
|
{ |
|
cv::Rect_<float> rect; |
|
int label; |
|
float prob; |
|
}; |
|
|
|
struct GridAndStride |
|
{ |
|
int grid0; |
|
int grid1; |
|
int stride; |
|
}; |
|
|
|
static void generate_grids_and_stride(const int target_size, std::vector<int>& strides, std::vector<GridAndStride>& grid_strides) |
|
{ |
|
for (auto stride : strides) |
|
{ |
|
int num_grid = target_size / stride; |
|
for (int g1 = 0; g1 < num_grid; g1++) |
|
{ |
|
for (int g0 = 0; g0 < num_grid; g0++) |
|
{ |
|
grid_strides.push_back((GridAndStride){g0, g1, stride}); |
|
} |
|
} |
|
} |
|
} |
|
|
|
static inline float intersection_area(const Object& a, const Object& b) |
|
{ |
|
cv::Rect_<float> inter = a.rect & b.rect; |
|
return inter.area(); |
|
} |
|
|
|
static void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right) |
|
{ |
|
int i = left; |
|
int j = right; |
|
float p = faceobjects[(left + right) / 2].prob; |
|
|
|
while (i <= j) |
|
{ |
|
while (faceobjects[i].prob > p) |
|
i++; |
|
|
|
while (faceobjects[j].prob < p) |
|
j--; |
|
|
|
if (i <= j) |
|
{ |
|
|
|
std::swap(faceobjects[i], faceobjects[j]); |
|
|
|
i++; |
|
j--; |
|
} |
|
} |
|
|
|
#pragma omp parallel sections |
|
{ |
|
#pragma omp section |
|
{ |
|
if (left < j) qsort_descent_inplace(faceobjects, left, j); |
|
} |
|
#pragma omp section |
|
{ |
|
if (i < right) qsort_descent_inplace(faceobjects, i, right); |
|
} |
|
} |
|
} |
|
|
|
static void qsort_descent_inplace(std::vector<Object>& objects) |
|
{ |
|
if (objects.empty()) |
|
return; |
|
|
|
qsort_descent_inplace(objects, 0, objects.size() - 1); |
|
} |
|
|
|
static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold) |
|
{ |
|
picked.clear(); |
|
|
|
const int n = faceobjects.size(); |
|
|
|
std::vector<float> areas(n); |
|
for (int i = 0; i < n; i++) |
|
{ |
|
areas[i] = faceobjects[i].rect.area(); |
|
} |
|
|
|
for (int i = 0; i < n; i++) |
|
{ |
|
const Object& a = faceobjects[i]; |
|
|
|
int keep = 1; |
|
for (int j = 0; j < (int)picked.size(); j++) |
|
{ |
|
const Object& b = faceobjects[picked[j]]; |
|
|
|
|
|
float inter_area = intersection_area(a, b); |
|
float union_area = areas[i] + areas[picked[j]] - inter_area; |
|
|
|
if (inter_area / union_area > nms_threshold) |
|
keep = 0; |
|
} |
|
|
|
if (keep) |
|
picked.push_back(i); |
|
} |
|
} |
|
|
|
|
|
static void generate_yolox_proposals(std::vector<GridAndStride> grid_strides, float* feat_blob, float prob_threshold, std::vector<Object>& objects) |
|
{ |
|
|
|
const int num_anchors = grid_strides.size(); |
|
|
|
for (int anchor_idx = 0; anchor_idx < num_anchors; anchor_idx++) |
|
{ |
|
const int grid0 = grid_strides[anchor_idx].grid0; |
|
const int grid1 = grid_strides[anchor_idx].grid1; |
|
const int stride = grid_strides[anchor_idx].stride; |
|
|
|
const int basic_pos = anchor_idx * (NUM_CLASSES + 5); |
|
|
|
|
|
float x_center = (feat_blob[basic_pos+0] + grid0) * stride; |
|
float y_center = (feat_blob[basic_pos+1] + grid1) * stride; |
|
float w = exp(feat_blob[basic_pos+2]) * stride; |
|
float h = exp(feat_blob[basic_pos+3]) * stride; |
|
float x0 = x_center - w * 0.5f; |
|
float y0 = y_center - h * 0.5f; |
|
|
|
float box_objectness = feat_blob[basic_pos+4]; |
|
for (int class_idx = 0; class_idx < NUM_CLASSES; class_idx++) |
|
{ |
|
float box_cls_score = feat_blob[basic_pos + 5 + class_idx]; |
|
float box_prob = box_objectness * box_cls_score; |
|
if (box_prob > prob_threshold) |
|
{ |
|
Object obj; |
|
obj.rect.x = x0; |
|
obj.rect.y = y0; |
|
obj.rect.width = w; |
|
obj.rect.height = h; |
|
obj.label = class_idx; |
|
obj.prob = box_prob; |
|
|
|
objects.push_back(obj); |
|
} |
|
|
|
} |
|
|
|
} |
|
} |
|
|
|
float* blobFromImage(cv::Mat& img){ |
|
float* blob = new float[img.total()*3]; |
|
int channels = 3; |
|
int img_h = img.rows; |
|
int img_w = img.cols; |
|
for (size_t c = 0; c < channels; c++) |
|
{ |
|
for (size_t h = 0; h < img_h; h++) |
|
{ |
|
for (size_t w = 0; w < img_w; w++) |
|
{ |
|
blob[c * img_w * img_h + h * img_w + w] = |
|
(float)img.at<cv::Vec3b>(h, w)[c]; |
|
} |
|
} |
|
} |
|
return blob; |
|
} |
|
|
|
|
|
static void decode_outputs(float* prob, std::vector<Object>& objects, float scale, const int img_w, const int img_h) { |
|
std::vector<Object> proposals; |
|
std::vector<int> strides = {8, 16, 32}; |
|
std::vector<GridAndStride> grid_strides; |
|
generate_grids_and_stride(INPUT_W, strides, grid_strides); |
|
generate_yolox_proposals(grid_strides, prob, BBOX_CONF_THRESH, proposals); |
|
std::cout << "num of boxes before nms: " << proposals.size() << std::endl; |
|
|
|
qsort_descent_inplace(proposals); |
|
|
|
std::vector<int> picked; |
|
nms_sorted_bboxes(proposals, picked, NMS_THRESH); |
|
|
|
|
|
int count = picked.size(); |
|
|
|
std::cout << "num of boxes: " << count << std::endl; |
|
|
|
objects.resize(count); |
|
for (int i = 0; i < count; i++) |
|
{ |
|
objects[i] = proposals[picked[i]]; |
|
|
|
|
|
float x0 = (objects[i].rect.x) / scale; |
|
float y0 = (objects[i].rect.y) / scale; |
|
float x1 = (objects[i].rect.x + objects[i].rect.width) / scale; |
|
float y1 = (objects[i].rect.y + objects[i].rect.height) / scale; |
|
|
|
|
|
x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f); |
|
y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f); |
|
x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f); |
|
y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f); |
|
|
|
objects[i].rect.x = x0; |
|
objects[i].rect.y = y0; |
|
objects[i].rect.width = x1 - x0; |
|
objects[i].rect.height = y1 - y0; |
|
} |
|
} |
|
|
|
const float color_list[80][3] = |
|
{ |
|
{0.000, 0.447, 0.741}, |
|
{0.850, 0.325, 0.098}, |
|
{0.929, 0.694, 0.125}, |
|
{0.494, 0.184, 0.556}, |
|
{0.466, 0.674, 0.188}, |
|
{0.301, 0.745, 0.933}, |
|
{0.635, 0.078, 0.184}, |
|
{0.300, 0.300, 0.300}, |
|
{0.600, 0.600, 0.600}, |
|
{1.000, 0.000, 0.000}, |
|
{1.000, 0.500, 0.000}, |
|
{0.749, 0.749, 0.000}, |
|
{0.000, 1.000, 0.000}, |
|
{0.000, 0.000, 1.000}, |
|
{0.667, 0.000, 1.000}, |
|
{0.333, 0.333, 0.000}, |
|
{0.333, 0.667, 0.000}, |
|
{0.333, 1.000, 0.000}, |
|
{0.667, 0.333, 0.000}, |
|
{0.667, 0.667, 0.000}, |
|
{0.667, 1.000, 0.000}, |
|
{1.000, 0.333, 0.000}, |
|
{1.000, 0.667, 0.000}, |
|
{1.000, 1.000, 0.000}, |
|
{0.000, 0.333, 0.500}, |
|
{0.000, 0.667, 0.500}, |
|
{0.000, 1.000, 0.500}, |
|
{0.333, 0.000, 0.500}, |
|
{0.333, 0.333, 0.500}, |
|
{0.333, 0.667, 0.500}, |
|
{0.333, 1.000, 0.500}, |
|
{0.667, 0.000, 0.500}, |
|
{0.667, 0.333, 0.500}, |
|
{0.667, 0.667, 0.500}, |
|
{0.667, 1.000, 0.500}, |
|
{1.000, 0.000, 0.500}, |
|
{1.000, 0.333, 0.500}, |
|
{1.000, 0.667, 0.500}, |
|
{1.000, 1.000, 0.500}, |
|
{0.000, 0.333, 1.000}, |
|
{0.000, 0.667, 1.000}, |
|
{0.000, 1.000, 1.000}, |
|
{0.333, 0.000, 1.000}, |
|
{0.333, 0.333, 1.000}, |
|
{0.333, 0.667, 1.000}, |
|
{0.333, 1.000, 1.000}, |
|
{0.667, 0.000, 1.000}, |
|
{0.667, 0.333, 1.000}, |
|
{0.667, 0.667, 1.000}, |
|
{0.667, 1.000, 1.000}, |
|
{1.000, 0.000, 1.000}, |
|
{1.000, 0.333, 1.000}, |
|
{1.000, 0.667, 1.000}, |
|
{0.333, 0.000, 0.000}, |
|
{0.500, 0.000, 0.000}, |
|
{0.667, 0.000, 0.000}, |
|
{0.833, 0.000, 0.000}, |
|
{1.000, 0.000, 0.000}, |
|
{0.000, 0.167, 0.000}, |
|
{0.000, 0.333, 0.000}, |
|
{0.000, 0.500, 0.000}, |
|
{0.000, 0.667, 0.000}, |
|
{0.000, 0.833, 0.000}, |
|
{0.000, 1.000, 0.000}, |
|
{0.000, 0.000, 0.167}, |
|
{0.000, 0.000, 0.333}, |
|
{0.000, 0.000, 0.500}, |
|
{0.000, 0.000, 0.667}, |
|
{0.000, 0.000, 0.833}, |
|
{0.000, 0.000, 1.000}, |
|
{0.000, 0.000, 0.000}, |
|
{0.143, 0.143, 0.143}, |
|
{0.286, 0.286, 0.286}, |
|
{0.429, 0.429, 0.429}, |
|
{0.571, 0.571, 0.571}, |
|
{0.714, 0.714, 0.714}, |
|
{0.857, 0.857, 0.857}, |
|
{0.000, 0.447, 0.741}, |
|
{0.314, 0.717, 0.741}, |
|
{0.50, 0.5, 0} |
|
}; |
|
|
|
static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects, std::string f) |
|
{ |
|
static const char* class_names[] = { |
|
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", |
|
"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", |
|
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", |
|
"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", |
|
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", |
|
"sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", |
|
"potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", |
|
"microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", |
|
"hair drier", "toothbrush" |
|
}; |
|
|
|
cv::Mat image = bgr.clone(); |
|
|
|
for (size_t i = 0; i < objects.size(); i++) |
|
{ |
|
const Object& obj = objects[i]; |
|
|
|
fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob, |
|
obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height); |
|
|
|
cv::Scalar color = cv::Scalar(color_list[obj.label][0], color_list[obj.label][1], color_list[obj.label][2]); |
|
float c_mean = cv::mean(color)[0]; |
|
cv::Scalar txt_color; |
|
if (c_mean > 0.5){ |
|
txt_color = cv::Scalar(0, 0, 0); |
|
}else{ |
|
txt_color = cv::Scalar(255, 255, 255); |
|
} |
|
|
|
cv::rectangle(image, obj.rect, color * 255, 2); |
|
|
|
char text[256]; |
|
sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100); |
|
|
|
int baseLine = 0; |
|
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.4, 1, &baseLine); |
|
|
|
cv::Scalar txt_bk_color = color * 0.7 * 255; |
|
|
|
int x = obj.rect.x; |
|
int y = obj.rect.y + 1; |
|
|
|
if (y > image.rows) |
|
y = image.rows; |
|
|
|
|
|
|
|
cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)), |
|
txt_bk_color, -1); |
|
|
|
cv::putText(image, text, cv::Point(x, y + label_size.height), |
|
cv::FONT_HERSHEY_SIMPLEX, 0.4, txt_color, 1); |
|
} |
|
|
|
cv::imwrite("det_res.jpg", image); |
|
fprintf(stderr, "save vis file\n"); |
|
|
|
|
|
} |
|
|
|
|
|
void doInference(IExecutionContext& context, float* input, float* output, const int output_size, cv::Size input_shape) { |
|
const ICudaEngine& engine = context.getEngine(); |
|
|
|
|
|
|
|
assert(engine.getNbBindings() == 2); |
|
void* buffers[2]; |
|
|
|
|
|
|
|
const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME); |
|
|
|
assert(engine.getBindingDataType(inputIndex) == nvinfer1::DataType::kFLOAT); |
|
const int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME); |
|
assert(engine.getBindingDataType(outputIndex) == nvinfer1::DataType::kFLOAT); |
|
int mBatchSize = engine.getMaxBatchSize(); |
|
|
|
|
|
CHECK(cudaMalloc(&buffers[inputIndex], 3 * input_shape.height * input_shape.width * sizeof(float))); |
|
CHECK(cudaMalloc(&buffers[outputIndex], output_size*sizeof(float))); |
|
|
|
|
|
cudaStream_t stream; |
|
CHECK(cudaStreamCreate(&stream)); |
|
|
|
|
|
CHECK(cudaMemcpyAsync(buffers[inputIndex], input, 3 * input_shape.height * input_shape.width * sizeof(float), cudaMemcpyHostToDevice, stream)); |
|
context.enqueue(1, buffers, stream, nullptr); |
|
CHECK(cudaMemcpyAsync(output, buffers[outputIndex], output_size * sizeof(float), cudaMemcpyDeviceToHost, stream)); |
|
cudaStreamSynchronize(stream); |
|
|
|
|
|
cudaStreamDestroy(stream); |
|
CHECK(cudaFree(buffers[inputIndex])); |
|
CHECK(cudaFree(buffers[outputIndex])); |
|
} |
|
|
|
int main(int argc, char** argv) { |
|
cudaSetDevice(DEVICE); |
|
|
|
char *trtModelStream{nullptr}; |
|
size_t size{0}; |
|
|
|
if (argc == 4 && std::string(argv[2]) == "-i") { |
|
const std::string engine_file_path {argv[1]}; |
|
std::ifstream file(engine_file_path, std::ios::binary); |
|
if (file.good()) { |
|
file.seekg(0, file.end); |
|
size = file.tellg(); |
|
file.seekg(0, file.beg); |
|
trtModelStream = new char[size]; |
|
assert(trtModelStream); |
|
file.read(trtModelStream, size); |
|
file.close(); |
|
} |
|
} else { |
|
std::cerr << "arguments not right!" << std::endl; |
|
std::cerr << "run 'python3 yolox/deploy/trt.py -n yolox-{tiny, s, m, l, x}' to serialize model first!" << std::endl; |
|
std::cerr << "Then use the following command:" << std::endl; |
|
std::cerr << "./yolox ../model_trt.engine -i ../../../assets/dog.jpg // deserialize file and run inference" << std::endl; |
|
return -1; |
|
} |
|
const std::string input_image_path {argv[3]}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
IRuntime* runtime = createInferRuntime(gLogger); |
|
assert(runtime != nullptr); |
|
ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size); |
|
assert(engine != nullptr); |
|
IExecutionContext* context = engine->createExecutionContext(); |
|
assert(context != nullptr); |
|
delete[] trtModelStream; |
|
auto out_dims = engine->getBindingDimensions(1); |
|
auto output_size = 1; |
|
for(int j=0;j<out_dims.nbDims;j++) { |
|
output_size *= out_dims.d[j]; |
|
} |
|
static float* prob = new float[output_size]; |
|
|
|
cv::Mat img = cv::imread(input_image_path); |
|
int img_w = img.cols; |
|
int img_h = img.rows; |
|
cv::Mat pr_img = static_resize(img); |
|
std::cout << "blob image" << std::endl; |
|
|
|
float* blob; |
|
blob = blobFromImage(pr_img); |
|
float scale = std::min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0)); |
|
|
|
|
|
auto start = std::chrono::system_clock::now(); |
|
doInference(*context, blob, prob, output_size, pr_img.size()); |
|
auto end = std::chrono::system_clock::now(); |
|
std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl; |
|
|
|
std::vector<Object> objects; |
|
decode_outputs(prob, objects, scale, img_w, img_h); |
|
draw_objects(img, objects, input_image_path); |
|
|
|
delete blob; |
|
|
|
context->destroy(); |
|
engine->destroy(); |
|
runtime->destroy(); |
|
return 0; |
|
} |
|
|