Spaces:
Runtime error
Runtime error
:recycle: [Refactor] Move STOP_SEQUENCES_MAP and TOKEN_LIMIT_MAP to constants
Browse files- constants/models.py +19 -0
- networks/message_streamer.py +10 -22
constants/models.py
CHANGED
@@ -6,3 +6,22 @@ MODEL_MAP = {
|
|
6 |
"gemma-7b": "google/gemma-7b-it",
|
7 |
"default": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
8 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
"gemma-7b": "google/gemma-7b-it",
|
7 |
"default": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
8 |
}
|
9 |
+
|
10 |
+
|
11 |
+
STOP_SEQUENCES_MAP = {
|
12 |
+
"mixtral-8x7b": "</s>",
|
13 |
+
"nous-mixtral-8x7b": "<|im_end|>",
|
14 |
+
"mistral-7b": "</s>",
|
15 |
+
"openchat-3.5": "<|end_of_turn|>",
|
16 |
+
"gemma-7b": "<eos>",
|
17 |
+
}
|
18 |
+
|
19 |
+
TOKEN_LIMIT_MAP = {
|
20 |
+
"mixtral-8x7b": 32768,
|
21 |
+
"nous-mixtral-8x7b": 32768,
|
22 |
+
"mistral-7b": 32768,
|
23 |
+
"openchat-3.5": 8192,
|
24 |
+
"gemma-7b": 8192,
|
25 |
+
}
|
26 |
+
|
27 |
+
TOKEN_RESERVED = 20
|
networks/message_streamer.py
CHANGED
@@ -5,28 +5,18 @@ import requests
|
|
5 |
from tiktoken import get_encoding as tiktoken_get_encoding
|
6 |
from transformers import AutoTokenizer
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from messagers.message_outputer import OpenaiStreamOutputer
|
9 |
-
from constants.models import MODEL_MAP
|
10 |
from utils.logger import logger
|
11 |
from utils.enver import enver
|
12 |
|
13 |
|
14 |
class MessageStreamer:
|
15 |
-
STOP_SEQUENCES_MAP = {
|
16 |
-
"mixtral-8x7b": "</s>",
|
17 |
-
"mistral-7b": "</s>",
|
18 |
-
"nous-mixtral-8x7b": "<|im_end|>",
|
19 |
-
"openchat-3.5": "<|end_of_turn|>",
|
20 |
-
"gemma-7b": "<eos>",
|
21 |
-
}
|
22 |
-
TOKEN_LIMIT_MAP = {
|
23 |
-
"mixtral-8x7b": 32768,
|
24 |
-
"mistral-7b": 32768,
|
25 |
-
"nous-mixtral-8x7b": 32768,
|
26 |
-
"openchat-3.5": 8192,
|
27 |
-
"gemma-7b": 8192,
|
28 |
-
}
|
29 |
-
TOKEN_RESERVED = 20
|
30 |
|
31 |
def __init__(self, model: str):
|
32 |
if model in MODEL_MAP.keys():
|
@@ -92,9 +82,7 @@ class MessageStreamer:
|
|
92 |
top_p = min(top_p, 0.99)
|
93 |
|
94 |
token_limit = int(
|
95 |
-
|
96 |
-
- self.TOKEN_RESERVED
|
97 |
-
- self.count_tokens(prompt)
|
98 |
)
|
99 |
if token_limit <= 0:
|
100 |
raise ValueError("Prompt exceeded token limit!")
|
@@ -125,8 +113,8 @@ class MessageStreamer:
|
|
125 |
"stream": True,
|
126 |
}
|
127 |
|
128 |
-
if self.model in
|
129 |
-
self.stop_sequences =
|
130 |
# self.request_body["parameters"]["stop_sequences"] = [
|
131 |
# self.STOP_SEQUENCES[self.model]
|
132 |
# ]
|
@@ -176,7 +164,7 @@ class MessageStreamer:
|
|
176 |
logger.back(content, end="")
|
177 |
final_content += content
|
178 |
|
179 |
-
if self.model in
|
180 |
final_content = final_content.replace(self.stop_sequences, "")
|
181 |
|
182 |
final_content = final_content.strip()
|
|
|
5 |
from tiktoken import get_encoding as tiktoken_get_encoding
|
6 |
from transformers import AutoTokenizer
|
7 |
|
8 |
+
from constants.models import (
|
9 |
+
MODEL_MAP,
|
10 |
+
STOP_SEQUENCES_MAP,
|
11 |
+
TOKEN_LIMIT_MAP,
|
12 |
+
TOKEN_RESERVED,
|
13 |
+
)
|
14 |
from messagers.message_outputer import OpenaiStreamOutputer
|
|
|
15 |
from utils.logger import logger
|
16 |
from utils.enver import enver
|
17 |
|
18 |
|
19 |
class MessageStreamer:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def __init__(self, model: str):
|
22 |
if model in MODEL_MAP.keys():
|
|
|
82 |
top_p = min(top_p, 0.99)
|
83 |
|
84 |
token_limit = int(
|
85 |
+
TOKEN_LIMIT_MAP[self.model] - TOKEN_RESERVED - self.count_tokens(prompt)
|
|
|
|
|
86 |
)
|
87 |
if token_limit <= 0:
|
88 |
raise ValueError("Prompt exceeded token limit!")
|
|
|
113 |
"stream": True,
|
114 |
}
|
115 |
|
116 |
+
if self.model in STOP_SEQUENCES_MAP.keys():
|
117 |
+
self.stop_sequences = STOP_SEQUENCES_MAP[self.model]
|
118 |
# self.request_body["parameters"]["stop_sequences"] = [
|
119 |
# self.STOP_SEQUENCES[self.model]
|
120 |
# ]
|
|
|
164 |
logger.back(content, end="")
|
165 |
final_content += content
|
166 |
|
167 |
+
if self.model in STOP_SEQUENCES_MAP.keys():
|
168 |
final_content = final_content.replace(self.stop_sequences, "")
|
169 |
|
170 |
final_content = final_content.strip()
|