passport / app /RemoveBg.py
thuralinhtut's picture
Add application file
ca9772c
raw
history blame
3.74 kB
import cv2
# import cvzone
# from cvzone.SelfiSegmentationModule import SelfiSegmentation
from PIL import Image
import rembg
# Load the input image
import os
import subprocess
from .tele import SendToTele
class RemoveBackground():
#images will be array
def __init__(self,images,aspect_ratio,rgb,output_di,bw=False):
self.images = images
self.aspect_ratio = aspect_ratio
self.rgb = rgb
self.output_di = output_di
self.bw = bw
self.model_name = "silueta"
self.session = rembg.new_session(model_name=self.model_name)
def deleteimage(self,file_path):
# Check if the file exists before deleting
if os.path.exists(file_path):
# Delete the file
os.remove(file_path)
print("File deleted successfully.")
else:
print("File does not exist.")
def remove(self):
aspect_ratio = self.aspect_ratio
for i in self.images:
print(i)
imgread = cv2.imread(i[0])
self.deleteimage(i[0])
if self.bw:
rgb = (128,128,128,0)
else:
rgb = (255,0,0,0)
img = rembg.remove(imgread,bgcolor=rgb, alpha_matting=True, alpha_matting_foreground_threshold=270,alpha_matting_background_threshold=20, alpha_matting_erode_size=11)
# Convert the image to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Load the face detector
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
if face_cascade.empty():
raise IOError('Unable to load the face cascade classifier xml file')
# Detect faces in the grayscale image
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)
if len(faces) > 0:
# Calculate the center of the bounding box
x, y, w, h = faces[0]
center_x = x + w // 2
center_y = y + h // 2
# Calculate the width and height of the cropped image
aspect_ratio = self.aspect_ratio
if w / h > aspect_ratio:
crop_width = int(aspect_ratio * h)
crop_height = h
else:
crop_width = w
crop_height = int(w / aspect_ratio)
# Calculate the coordinates of the top-left corner of the cropped image
margin_x = crop_width // 2
margin_y = crop_height // 2
crop_x = max(0, center_x - crop_width // 2 - margin_x)
crop_y = max(0, center_y - crop_height // 2 - margin_y)
# Crop the image
if self.bw:
crop_img = gray[crop_y:crop_y+crop_height+margin_y*2, crop_x:crop_x+crop_width+margin_x*2]
else:
crop_img = img[crop_y:crop_y+crop_height+margin_y*2, crop_x:crop_x+crop_width+margin_x*2]
else:
print("Face not detect")
basename =os.path.basename(i[0])
cv2.imwrite(self.output_di+basename,crop_img)
SendToTele(document_path=self.output_di+basename)
# images = {('img.jpg',5)}
# paper_size = (1200,1800)
# gap = 40; # gap between images;
# img_max_width = 1.1 * 300
# img_max_height = 1.3 * 300
# aspect_ratio = img_max_width / img_max_height
# bg_rgb = (255,0,0)
# output_di = 'img/'
# a = RemoveBackground(images,aspect_ratio,bg_rgb,output_di,True)
# a.remove()