Spaces:
Sleeping
Sleeping
thugCodeNinja
commited on
Commit
•
4eae158
1
Parent(s):
3285621
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from torch.nn.functional import softmax
|
4 |
+
import shap
|
5 |
+
import requests
|
6 |
+
from transformers import RobertaTokenizer, pipeline, RobertaModel
|
7 |
+
model_dir = 'temp'
|
8 |
+
tokenizer = RobertaTokenizer.from_pretrained(model_dir)
|
9 |
+
model = RobertaModel.from_pretrained(model_dir)
|
10 |
+
|
11 |
+
@app.route('/gradio_app')
|
12 |
+
def gradio_app():
|
13 |
+
def process_text(input_text, input_file):
|
14 |
+
if input_text:
|
15 |
+
text = input_text
|
16 |
+
elif input_file is not None:
|
17 |
+
text = input_file.read().decode('utf-8')
|
18 |
+
inputs = tokenizer(text, return_tensors="pt")
|
19 |
+
with torch.no_grad():
|
20 |
+
logits = model(**inputs).logits
|
21 |
+
probs = softmax(logits, dim=1)
|
22 |
+
max_prob, predicted_class_id = torch.max(probs, dim=1)
|
23 |
+
prob = str(round(max_prob.item() * 100, 2))
|
24 |
+
label = model.config.id2label[predicted_class_id.item()]
|
25 |
+
final_label='Human' if model.config.id2label[predicted_class_id.item()]=='LABEL_0' else 'Chat-GPT'
|
26 |
+
processed_result = text
|
27 |
+
|
28 |
+
def search(text):
|
29 |
+
query = text
|
30 |
+
api_key = 'AIzaSyClvkiiJTZrCJ8BLqUY9I38WYmbve8g-c8'
|
31 |
+
search_engine_id = '53d064810efa44ce7'
|
32 |
+
url = f'https://www.googleapis.com/customsearch/v1?key={api_key}&cx={search_engine_id}&q={query}'
|
33 |
+
|
34 |
+
try:
|
35 |
+
response = requests.get(url)
|
36 |
+
data = response.json()
|
37 |
+
return data
|
38 |
+
except Exception as e:
|
39 |
+
return {'error': str(e)}
|
40 |
+
|
41 |
+
def find_plagiarism(text):
|
42 |
+
search_results = search(text)
|
43 |
+
if 'items' not in search_results:
|
44 |
+
return []
|
45 |
+
similar_articles = []
|
46 |
+
for item in search_results['items']:
|
47 |
+
title = item.get('title', '')
|
48 |
+
link = item.get('link', '')
|
49 |
+
similar_articles.append({'title': title, 'link': link})
|
50 |
+
return similar_articles[:5]
|
51 |
+
|
52 |
+
pipe = pipeline('text-classification', model=model, tokenizer=tokenizer)
|
53 |
+
prediction = pipe([text])
|
54 |
+
explainer = shap.Explainer(pipe)
|
55 |
+
shap_values = explainer([text])
|
56 |
+
text_plot = shap.plots.text(shap_values, display=True)
|
57 |
+
similar_articles = find_plagiarism(text)
|
58 |
+
|
59 |
+
return processed_result, prob, final_label, text_plot,similar_articles
|
60 |
+
|
61 |
+
text_input = gr.inputs.Textbox(label="Enter text")
|
62 |
+
file_input = gr.inputs.File(label="Upload a text file")
|
63 |
+
outputs = [gr.Textbox(label="Processed text"), gr.Textbox(label="Probability"), gr.Textbox(label="Label"), gr.HTML(label="SHAP Plot"),gr.Table(label="Similar Articles", columns=["Title", "Link"])]
|
64 |
+
|
65 |
+
gr.Interface(fn=process_text, inputs=[text_input, file_input], outputs=outputs).launch()
|
66 |
+
|
67 |
+
return ''
|
68 |
+
|
69 |
+
if __name__ == '__main__':
|
70 |
+
app.run(debug=True)
|