Time_RCD / training.py
Oliver Le
Initial commit
d03866e
import datetime
import itertools
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, DistributedSampler
import torch.nn.functional as F
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
import random
import numpy as np
from typing import Tuple, List, Dict, Any, Union, Optional
import argparse
import json
import numpy as np
import torch
from torch.utils.data import Dataset
import random
import os
import pickle
from typing import Dict, List, Union, Optional, Tuple
from pathlib import Path
from dataclasses import dataclass
import sys
from models.time_rcd.ts_encoder_bi_bias import TimeSeriesEncoder
from models.time_rcd.time_rcd_config import TimeRCDConfig, default_config
import warnings
warnings.filterwarnings("ignore")
# PYTHONPATH=/home2/lijinbo/Projects/AnomalyLlava-master/ python src/models/Moirai/AnomalyLlava_pretrain_multi.py
@dataclass
class PretrainBatch:
"""Batch structure for pretraining tasks."""
time_series: torch.Tensor
labels: torch.Tensor
masked_time_series: torch.Tensor
mask_indices: torch.Tensor
class ChatTSAnomalyPretrainDataset(Dataset):
def __init__(self,
dataset_dir: str,
filename: str,
split: str = 'train',
train_ratio: float = 0.95,
seed: int = 42):
file_path = os.path.join(dataset_dir, filename)
with open(file_path, 'rb') as f:
dataset = pickle.load(f)
random.seed(seed)
indices = list(range(len(dataset)))
random.shuffle(indices)
num_train = int(len(dataset) * train_ratio)
if split == 'train':
selected_indices = indices[:num_train]
elif split == 'test':
selected_indices = indices[num_train:]
else:
raise ValueError("split must be 'train' or 'test'")
self.data = [dataset[i] for i in selected_indices]
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
sample = self.data[idx]
time_series = torch.tensor(sample['time_series'], dtype=torch.float32)
normal_time_series = torch.tensor(sample['normal_time_series'], dtype=torch.float32)
labels = torch.tensor(sample['labels'], dtype=torch.long)
attribute = sample['attribute']
return time_series, normal_time_series, labels, attribute
class TimeSeriesPretrainModel(nn.Module):
"""Model for time series pretraining with masked reconstruction and anomaly detection."""
def __init__(self, config: TimeRCDConfig):
super().__init__()
self.config = config
# Extract TimeSeriesEncoder parameters from config
ts_config = config.ts_config
self.ts_encoder = TimeSeriesEncoder(
d_model=ts_config.d_model,
d_proj=ts_config.d_proj,
patch_size=ts_config.patch_size,
num_layers=ts_config.num_layers,
num_heads=ts_config.num_heads,
d_ff_dropout=ts_config.d_ff_dropout,
use_rope=ts_config.use_rope,
num_features=ts_config.num_features,
activation=ts_config.activation
)
# Masked reconstruction head
self.reconstruction_head = nn.Sequential(
nn.Linear(config.ts_config.d_proj, config.ts_config.d_proj * 4),
nn.GELU(),
nn.Dropout(config.dropout),
nn.Linear(config.ts_config.d_proj * 4, config.ts_config.d_proj * 4),
nn.GELU(),
nn.Dropout(config.dropout),
nn.Linear(config.ts_config.d_proj * 4, 1) # (B, seq_len, num_features, 1)
)
# Anomaly detection head
self.anomaly_head = nn.Sequential(
nn.Linear(config.ts_config.d_proj, config.ts_config.d_proj // 2),
nn.GELU(),
nn.Dropout(config.dropout),
nn.Linear(config.ts_config.d_proj // 2, 2) # (B, seq_len, num_features, 2) for binary classification
)
self.anomaly_head.apply(self._init_weights)
self.reconstruction_head.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
nn.init.xavier_normal_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
def forward(self, time_series: torch.Tensor, mask: Optional[torch.Tensor] = None):
"""Forward pass through the encoder."""
local_embeddings = self.ts_encoder(time_series, mask)
return local_embeddings
def masked_reconstruction_loss(self,
local_embeddings: torch.Tensor, # (B, seq_len, num_features, d_proj)
original_time_series: torch.Tensor, # (B, seq_len, num_features),
mask: torch.Tensor # (B, seq_len)
) -> torch.Tensor:
"""Compute masked reconstruction loss."""
batch_size, seq_len, num_features = original_time_series.shape
patch_size = self.config.ts_config.patch_size
# 确保数据类型一致
mask = mask.bool()
# 只对 masked 的位置计算损失
# local_embeddings: [B, seq_len, num_features, d_proj]
# 通过重构头预测原始值
reconstructed = self.reconstruction_head(local_embeddings) # (B, seq_len, num_features, 1)
reconstructed = reconstructed.view(batch_size, seq_len, num_features)
# 只对被 mask 的位置计算损失
mask_expanded = mask.unsqueeze(-1).expand(-1, -1, num_features) # (B, seq_len, num_features)
reconstruction_loss = F.mse_loss(
reconstructed[mask_expanded],
original_time_series[mask_expanded]
)
return reconstruction_loss
def anomaly_detection_loss(self,
local_embeddings: torch.Tensor, # (B, seq_len, num_features, d_proj)
labels: torch.Tensor) -> torch.Tensor: # (B, seq_len)
"""Compute anomaly detection loss for each timestep."""
# Project local embeddings to anomaly scores
logits = self.anomaly_head(local_embeddings) # (B, seq_len, num_features, 2)
logits = torch.mean(logits, dim=-2) # Average over num_features to get (B, seq_len, 2)
# Reshape for loss computation
batch_size, seq_len, _ = logits.shape
logits = logits.view(-1, 2) # (B*seq_len, 2)
labels = labels.view(-1) # (B*seq_len)
labels = (labels > 0.5).long()
# Create mask for valid labels (not padding)
valid_mask = (labels != -1)
# Compute loss only on valid timesteps
if valid_mask.sum() > 0:
anomaly_loss = F.cross_entropy(
logits[valid_mask],
labels[valid_mask]
)
else:
anomaly_loss = torch.tensor(0.0, device=logits.device)
return anomaly_loss
def create_random_mask(time_series: torch.Tensor, #(B, max_seq_len, num_features)
attention_mask: torch.Tensor, # (B, max_seq_len)
mask_ratio: float = 0.15) -> Tuple[torch.Tensor, torch.Tensor]:
"""Create random mask for time series patches, only masking valid sequence parts."""
batch_size, seq_len, num_features = time_series.shape
patch_size = default_config.ts_config.patch_size
mask = torch.zeros(batch_size, seq_len) # (B, max_seq_len)
for i in range(batch_size):
# Get valid sequence length for this sample
valid_length = attention_mask[i].sum().item()
# Calculate number of patches in valid sequence
num_valid_patches = (valid_length - 1) // patch_size + 1
num_masked = int(num_valid_patches * mask_ratio)
if num_masked > 0:
# Only select patches from valid sequence
masked_patches = torch.randperm(num_valid_patches)[:num_masked]
for j in masked_patches:
start_idx = j * patch_size
end_idx = min((j + 1) * patch_size, valid_length) # Don't exceed valid length
mask[i, start_idx:end_idx] = 1
# Create masked time series - only mask valid parts
masked_time_series = time_series.clone()
mask_indices = mask.bool() & attention_mask # Only mask where both mask and attention_mask are True
mask_expanded = mask_indices.unsqueeze(-1).expand(-1, -1, num_features) # (B, max_seq_len, num_features)
# mask的部分赋值为0而不是随机
masked_time_series[mask_expanded] = 0.0
# masked_time_series[mask_expanded] = torch.randn_like(masked_time_series[mask_expanded]) * 0.1
# Update mask to only include valid parts
mask = mask * attention_mask.float()
return masked_time_series, mask # (B, max_seq_len, num_features), (B, max_seq_len)
def collate_fn(batch):
"""Collate function for pretraining dataset."""
time_series_list, normal_time_series_list, labels_list, attribute_list = zip(*batch)
# Convert to tensors and pad sequences
if time_series_list[0].ndim == 1:
time_series_tensors = [ts.unsqueeze(-1) for ts in time_series_list] # Add feature dimension
normal_time_series_tensors = [nts.unsqueeze(-1) for nts in normal_time_series_list]
else:
time_series_tensors = [ts for ts in time_series_list]
normal_time_series_tensors = [nts for nts in normal_time_series_list]
# standardize time series
concatenated = torch.cat(time_series_tensors, dim=0) # (total_length, num_features)
mean = concatenated.mean(dim=0, keepdim=True) # (1, num_features)
std = concatenated.std(dim=0, keepdim=True) # (1, num_features)
std = std + 1e-4
time_series_tensors_std = [(ts - mean) / std for ts in time_series_tensors]
normal_time_series_tensors_std = [(nts - mean) / std for nts in normal_time_series_tensors]
time_series_tensors = time_series_tensors_std
normal_time_series_tensors = normal_time_series_tensors_std
# labels_tensor = torch.stack(labels_list)
labels = [label for label in labels_list]
# Pad time series to same length
padded_time_series = torch.nn.utils.rnn.pad_sequence(
time_series_tensors, batch_first=True, padding_value=0.0
) # (B, max_seq_len, num_features)
padded_normal_time_series = torch.nn.utils.rnn.pad_sequence(
normal_time_series_tensors, batch_first=True, padding_value=0.0
) # (B, max_seq_len, num_features)
padded_labels = torch.nn.utils.rnn.pad_sequence(
labels, batch_first=True, padding_value=-1
) # (B, max_seq_len)
sequence_lengths = [ts.size(0) for ts in time_series_tensors]
B, max_seq_len, num_features = padded_time_series.shape
attention_mask = torch.zeros(B, max_seq_len, dtype=torch.bool) # (B, max_seq_len)
for i, length in enumerate(sequence_lengths):
attention_mask[i, :length] = True
# Create random masks for reconstruction task - only mask valid sequence parts
masked_time_series, mask = create_random_mask(padded_time_series, attention_mask)
return {
'time_series': padded_time_series,
'normal_time_series': padded_normal_time_series,
'masked_time_series': masked_time_series,
'mask': mask, # for reconstruction task
'labels': padded_labels,
'attention_mask': attention_mask, # for padding
'attribute': attribute_list
}
def set_seed(seed: int) -> None:
"""Set random seed for reproducibility."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def setup_distributed(rank: int, world_size: int, config: TimeRCDConfig) -> None:
"""Setup distributed training environment."""
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = config.dist_port
try:
dist.init_process_group(
"nccl",
rank=rank,
world_size=world_size,
timeout=datetime.timedelta(minutes=30)
)
torch.cuda.set_device(rank)
if rank == 0:
print(f"Successfully initialized distributed training on rank {rank} with world size {world_size}")
except Exception as e:
print(f"Rank {rank}: Initialization failed with error: {e}")
raise e
def cleanup_distributed() -> None:
"""Clean up distributed training environment."""
if dist.is_initialized():
dist.destroy_process_group()
def evaluate_epoch(test_loader: DataLoader,
model: nn.Module,
config: TimeRCDConfig,
device: torch.device,
rank: int) -> float:
"""Evaluate model on test dataset."""
model.eval()
total_loss = 0.0
total_recon_loss = 0.0
total_anomaly_loss = 0.0
num_batches = 0
with torch.no_grad():
for batch in itertools.islice(test_loader, min(len(test_loader), config.test_batch_limit)):
# Move data to device
time_series = batch['time_series'].to(device)
masked_time_series = batch['masked_time_series'].to(device)
mask = batch['mask'].to(device)
labels = batch['labels'].to(device)
attention_mask = batch['attention_mask'].to(device)
# Forward pass
local_embeddings = model(masked_time_series, attention_mask & (~mask.bool()))
# Compute losses
recon_loss = model.module.masked_reconstruction_loss(
local_embeddings, time_series, mask
)
anomaly_loss = model.module.anomaly_detection_loss(local_embeddings, labels)
total_loss_batch = recon_loss + anomaly_loss
total_loss += total_loss_batch.item()
total_recon_loss += recon_loss.item()
total_anomaly_loss += anomaly_loss.item()
num_batches += 1
avg_loss = total_loss / num_batches if num_batches > 0 else 0.0
avg_recon_loss = total_recon_loss / num_batches if num_batches > 0 else 0.0
avg_anomaly_loss = total_anomaly_loss / num_batches if num_batches > 0 else 0.0
if rank == 0:
print(f"Validation Results:")
print(f" Average Total Loss: {avg_loss:.4f}")
print(f" Average Recon Loss: {avg_recon_loss:.4f}")
print(f" Average Anomaly Loss: {avg_anomaly_loss:.4f}")
return avg_loss
def train_epoch(train_loader: DataLoader,
model: nn.Module,
optimizer: optim.Optimizer,
config: TimeRCDConfig,
device: torch.device,
epoch: int,
rank: int,
scaler: Optional[torch.cuda.amp.GradScaler] = None) -> float:
"""Train for one epoch with multiple pretraining tasks."""
model.train()
total_loss = 0.0
total_recon_loss = 0.0
total_anomaly_loss = 0.0
num_batches = 0
for batch_idx, batch in enumerate(train_loader):
if batch_idx % 10 == 0:
torch.cuda.empty_cache()
optimizer.zero_grad()
# Move data to device
time_series = batch['time_series'].to(device) # (B, max_seq_len, num_features)
masked_time_series = batch['masked_time_series'].to(device)
mask = batch['mask'].to(device) # (B, max_seq_len)
labels = batch['labels'].to(device)
attention_mask = batch['attention_mask'].to(device)
if config.mixed_precision and scaler is not None:
with torch.amp.autocast('cuda'):
local_embeddings = model(masked_time_series, attention_mask & (~mask.bool()))
recon_loss = model.module.masked_reconstruction_loss(
local_embeddings, time_series, mask
)
anomaly_loss = model.module.anomaly_detection_loss(local_embeddings, labels)
total_loss_batch = recon_loss + anomaly_loss
scaler.scale(total_loss_batch).backward()
scaler.step(optimizer)
scaler.update()
else:
local_embeddings = model(masked_time_series, attention_mask & (~mask.bool()))
recon_loss = model.module.masked_reconstruction_loss(
local_embeddings, time_series, mask
)
anomaly_loss = model.module.anomaly_detection_loss(local_embeddings, labels)
total_loss_batch = recon_loss + anomaly_loss
total_loss_batch.backward()
optimizer.step()
# Accumulate losses
total_loss += total_loss_batch.item()
total_recon_loss += recon_loss.item()
total_anomaly_loss += anomaly_loss.item()
num_batches += 1
# Log progress based on log_freq
if rank == 0 and batch_idx % config.log_freq == 0:
print(f"Epoch {epoch}, Batch {batch_idx}/{len(train_loader)}")
print(f" Total Loss: {total_loss_batch.item():.4f}")
print(f" Recon Loss: {recon_loss.item():.4f}")
print(f" Anomaly Loss: {anomaly_loss.item():.4f}")
avg_loss = total_loss / num_batches
avg_recon_loss = total_recon_loss / num_batches
avg_anomaly_loss = total_anomaly_loss / num_batches
if rank == 0:
print(f"Epoch {epoch} completed:")
print(f" Average Total Loss: {avg_loss:.4f}")
print(f" Average Recon Loss: {avg_recon_loss:.4f}")
print(f" Average Anomaly Loss: {avg_anomaly_loss:.4f}")
return avg_loss
def save_checkpoint(model: nn.Module,
optimizer: optim.Optimizer,
config: TimeRCDConfig,
epoch: int,
avg_loss: float,
rank: int = 0,
is_best: bool = False) -> None:
"""Save model checkpoint."""
if rank != 0:
return
# Extract model state dict (handle DDP wrapper)
if hasattr(model, 'module'):
model_state_dict = model.module.state_dict()
else:
model_state_dict = model.state_dict()
checkpoint = {
'epoch': epoch,
'model_state_dict': model_state_dict,
'optimizer_state_dict': optimizer.state_dict(),
'loss': avg_loss,
'config': config.to_dict()
}
os.makedirs(config.checkpoint_dir, exist_ok=True)
# Always save the latest checkpoint
latest_path = os.path.join(config.checkpoint_dir, "pretrain_checkpoint_latest.pth")
torch.save(checkpoint, latest_path)
# Save the checkpoint at specified frequency
if epoch % config.save_freq == 0 or epoch == config.num_epochs - 1:
save_path = os.path.join(config.checkpoint_dir, f"pretrain_checkpoint_epoch_{epoch}.pth")
torch.save(checkpoint, save_path)
print(f"Checkpoint saved to {save_path} (epoch {epoch}, loss: {avg_loss:.4f})")
# Save best model if this is the best validation loss
if is_best:
best_path = os.path.join(config.checkpoint_dir, "pretrain_checkpoint_best.pth")
torch.save(checkpoint, best_path)
print(f"New best model saved to {best_path} (epoch {epoch}, val_loss: {avg_loss:.4f})")
# Save just the time series encoder for downstream tasks
if hasattr(model, 'module'):
ts_encoder_state = model.module.ts_encoder.state_dict()
else:
ts_encoder_state = model.ts_encoder.state_dict()
best_encoder_path = os.path.join(config.checkpoint_dir, "pretrained_ts_encoder.pth")
torch.save(ts_encoder_state, best_encoder_path)
print(f"Best pretrained time series encoder saved to {best_encoder_path}")
def train_multiple_datasets(dataset_filenames: List[str], config: TimeRCDConfig) -> None:
"""Train on multiple datasets sequentially with model weight continuation."""
print(f'\n{"=" * 50}')
print(f"Starting Multi-Dataset Sequential Training")
print(f"Number of datasets: {len(dataset_filenames)}")
print(f"Datasets: {dataset_filenames}")
print("Training Mode: Continuous (model weights carried over between datasets)")
print("=" * 50)
# Parse GPU IDs from config
gpu_ids = [int(x.strip()) for x in config.cuda_devices.split(',')]
world_size = len(gpu_ids)
# Set CUDA_VISIBLE_DEVICES
os.environ['CUDA_VISIBLE_DEVICES'] = config.cuda_devices
# Global checkpoint path for model continuation
global_checkpoint_path = None
# global_checkpoint_path = "experiments/checkpoints/pretrain_multi_activate_big/dataset_8_12.pkl/pretrain_checkpoint_best.pth"
for dataset_idx, filename in enumerate(dataset_filenames):
print(f"\n{'='*50}")
print(f"Training on Dataset {dataset_idx + 1}/{len(dataset_filenames)}: {filename}")
if global_checkpoint_path is not None:
print(f"Continuing from previous dataset's trained model...")
print(f"{'='*50}")
batch_size_list = [256, 64, 64, 32, 32, 16, 16, 48,
16, 16, 16, 32, 16, 16, 16, 16,
16, 16, 16, 16, 12, 12, 12, 16,
12, 12, 12, 12, 12, 12, 12, 16,
12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 8]
num_features = int(os.path.splitext(filename)[0].split('_')[-1])
print(f"Using batch size: {batch_size_list[num_features - 1] if num_features <= len(batch_size_list) else batch_size_list[-1]} for {filename}")
if num_features <= len(batch_size_list):
batch_size = batch_size_list[num_features - 1]
else:
batch_size = batch_size_list[-1]
config.batch_size = batch_size
# Create dataset-specific checkpoint directory
original_checkpoint_dir = config.checkpoint_dir
config.checkpoint_dir = os.path.join(original_checkpoint_dir, f"{filename}")
os.makedirs(config.checkpoint_dir, exist_ok=True)
# Set the checkpoint path for model continuation
config.continuation_checkpoint = global_checkpoint_path
config.ts_config.num_features = num_features
if world_size == 1:
# Single GPU training
print(f"Running single GPU pretraining for {filename}...")
train_worker(0, 1, config, filename)
else:
# Multi-GPU distributed training
print(f"Running distributed pretraining for {filename}...")
mp.spawn(
train_worker,
args=(world_size, config, filename),
nprocs=world_size,
join=True
)
# Update global checkpoint path for next dataset
global_checkpoint_path = os.path.join(config.checkpoint_dir, "pretrain_checkpoint_best.pth")
# Restore original checkpoint directory
config.checkpoint_dir = original_checkpoint_dir
print(f"Completed training on dataset: {filename}")
if dataset_idx < len(dataset_filenames) - 1:
print(f"Model weights will be loaded for next dataset training...")
print(f"\n{'='*50}")
print("Multi-Dataset Sequential Training Completed!")
print(f"All {len(dataset_filenames)} datasets have been processed with model continuation.")
print(f"{'='*50}")
def train_worker(rank: int, world_size: int, config: TimeRCDConfig, filename: str = None) -> None:
"""Training worker function for each process."""
print(f"Running DDP on rank {rank} with world_size {world_size} for dataset: {filename}")
# Setup distributed training
setup_distributed(rank, world_size, config)
# Set device for this process
device = torch.device(f"cuda:{rank}")
# Set random seed
set_seed(config.seed + rank)
try:
# Initialize model
model = TimeSeriesPretrainModel(config).to(device)
# Load checkpoint if continuing from previous dataset
checkpoint = None
if hasattr(config, 'continuation_checkpoint') and config.continuation_checkpoint and os.path.exists(config.continuation_checkpoint):
if rank == 0:
print(f"Loading checkpoint from previous dataset: {config.continuation_checkpoint}")
checkpoint = torch.load(config.continuation_checkpoint, map_location=device)
# Handle DDP state_dict compatibility
state_dict = checkpoint['model_state_dict']
# Remove 'module.' prefix if it exists (from DDP wrapped model)
if any(key.startswith('module.') for key in state_dict.keys()):
new_state_dict = {}
for key, value in state_dict.items():
if key.startswith('module.'):
new_key = key[7:] # Remove 'module.' prefix
new_state_dict[new_key] = value
else:
new_state_dict[key] = value
state_dict = new_state_dict
model.load_state_dict(state_dict, strict=False)
if rank == 0:
print(f"Successfully loaded model weights from previous dataset training")
# Wrap model with DDP
# model = DDP(model, device_ids=[rank], find_unused_parameters=True)
model = DDP(model, device_ids=[rank])
# Setup optimizer
optimizer = optim.AdamW(
model.parameters(),
lr=config.learning_rate,
weight_decay=config.weight_decay
)
# Load optimizer state if continuing and optimizer state exists
if checkpoint is not None and 'optimizer_state_dict' in checkpoint:
try:
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
if rank == 0:
print("Successfully loaded optimizer state from previous dataset training")
except Exception as e:
if rank == 0:
print(f"Warning: Could not load optimizer state: {e}")
print("Continuing with fresh optimizer state")
print("This is normal when model architecture or optimizer parameters change")
# Setup mixed precision scaler
scaler = torch.amp.GradScaler() if config.mixed_precision else None
# Load data
train_dataset = ChatTSAnomalyPretrainDataset(config.pretrain_data_path, filename, split="train")
test_dataset = ChatTSAnomalyPretrainDataset(config.pretrain_data_path, filename, split="test")
# Create distributed samplers
train_sampler = DistributedSampler(
train_dataset,
num_replicas=world_size,
rank=rank,
shuffle=True
)
train_loader = DataLoader(
train_dataset,
batch_size=config.batch_size,
sampler=train_sampler,
collate_fn=collate_fn,
num_workers=2,
pin_memory=True
)
# Create test sampler and loader for validation
test_sampler = DistributedSampler(
test_dataset,
num_replicas=world_size,
rank=rank,
shuffle=False
)
test_loader = DataLoader(
test_dataset,
batch_size=config.batch_size,
sampler=test_sampler,
collate_fn=collate_fn,
num_workers=2,
pin_memory=True
)
# Early stopping parameters
best_val_loss = float('inf')
patience_counter = 0
early_stopping_patience = getattr(config, 'early_stopping_patience', 10)
# Training loop
if rank == 0:
dataset_name = filename if filename else "default"
continuation_info = ""
if hasattr(config, 'continuation_checkpoint') and config.continuation_checkpoint and os.path.exists(config.continuation_checkpoint):
continuation_info = " (continuing from previous dataset)"
print(f"Starting pretraining for {config.num_epochs} epochs on dataset {dataset_name}{continuation_info}...")
print(f"Total training batches per process: {len(train_loader)}")
print(f"Total validation batches per process: {min(config.test_batch_limit, len(test_loader))}")
print(f"Early stopping patience: {early_stopping_patience} epochs")
print(f"Tasks: Masked Reconstruction + Anomaly Detection")
for epoch in range(config.num_epochs):
# Set epoch for distributed samplers
train_sampler.set_epoch(epoch)
test_sampler.set_epoch(epoch)
# Training phase
avg_train_loss = train_epoch(train_loader, model, optimizer,
config, device, epoch, rank, scaler)
# Validation phase
avg_val_loss = evaluate_epoch(test_loader, model, config, device, rank)
# Check if this is the best model so far
is_best = avg_val_loss < best_val_loss
if is_best:
best_val_loss = avg_val_loss
patience_counter = 0
if rank == 0:
print(f"New best validation loss: {best_val_loss:.4f}")
else:
patience_counter += 1
if rank == 0:
print(f"Validation loss did not improve. Patience: {patience_counter}/{early_stopping_patience}")
# Save checkpoint with best model flag
save_checkpoint(model, optimizer, config, epoch, avg_val_loss, rank, is_best)
# Early stopping check
if patience_counter >= early_stopping_patience:
if rank == 0:
print(f"Early stopping triggered after {epoch + 1} epochs")
print(f"Best validation loss: {best_val_loss:.4f}")
break
finally:
# Clean up distributed training
cleanup_distributed()
def main() -> None:
# PYTHONPATH=/home2/lijinbo/Projects/AnomalyLlava-master/ python src/models/Moirai/AnomalyLlava_pretrain_multi.py
"""Main function to launch distributed pretraining."""
# Load configuration
config = default_config
# Update config for pretraining
config.num_epochs = 50
config.learning_rate = 5e-4 # Higher learning rate for pretraining
config.batch_size = 64
config.ts_config.patch_size = 16
config.checkpoint_dir = "checkpoints/"
config.cuda_devices = "3"
config.mixed_precision = False
config.dist_port = "16798"
config.early_stopping_patience = 7 # Stop training if validation loss doesn't improve for 10 epochs
config.pretrain_data_path = "training_data/"
# ===== Multidataset Training Configuration =====
# Change to True for multi-dataset training
parser = argparse.ArgumentParser()
parser.add_argument('--mode', type=str, default='multi', choices=['multi', 'single'])
args = parser.parse_args()
# Change to True for single-dataset training
if args.mode == 'multi':
use_multi_dataset_training = True
else:
use_multi_dataset_training = False
# Filename for single dataset training
single_dataset_filename = "uni_data_0_1.pkl"
# Filename list for multi-dataset training
dataset_filenames = [
"dataset_0_1.pkl",
"dataset_1_1.pkl",
"dataset_2_1.pkl",
"dataset_7_8.pkl",
"dataset_8_12.pkl",
"dataset_9_16.pkl",
"dataset_10_20.pkl",
]
# Parse GPU IDs from config
gpu_ids = [int(x.strip()) for x in config.cuda_devices.split(',')]
world_size = len(gpu_ids)
print(f"Using GPUs: {gpu_ids}")
print(f"World size: {world_size}")
print(f"CUDA_VISIBLE_DEVICES: {os.environ.get('CUDA_VISIBLE_DEVICES', config.cuda_devices)}")
print("=" * 50)
print("AnomalyLLava Time Series Pretraining")
print("Tasks:")
print(" 1. Masked Reconstruction - Reconstruct masked time series patches")
print(" 2. Anomaly Detection - Binary classification of normal/anomalous series")
print("Features:")
print(" - Early stopping with validation loss monitoring")
print(" - Best model checkpoint saving")
print(f" - Early stopping patience: {config.early_stopping_patience} epochs")
if use_multi_dataset_training:
print(" - Sequential multi-dataset training with model weight continuation")
print("=" * 50)
# Create checkpoint directory
os.makedirs(config.checkpoint_dir, exist_ok=True)
if use_multi_dataset_training:
# Multi-dataset training
print(f"Training Mode: Multi-Dataset Sequential ({len(dataset_filenames)} datasets)")
print(f"Datasets will be trained sequentially with model weight continuation")
train_multiple_datasets(dataset_filenames, config)
else:
# Single dataset training
print(f"Training Mode: Single Dataset ({single_dataset_filename})")
# Set CUDA_VISIBLE_DEVICES
os.environ['CUDA_VISIBLE_DEVICES'] = config.cuda_devices
num_features = int(os.path.splitext(single_dataset_filename)[0].split('_')[-1])
config.ts_config.num_features = num_features
if world_size == 1:
# Single GPU training
print("Running single GPU pretraining...")
train_worker(0, 1, config, single_dataset_filename)
else:
# Multi-GPU distributed training
print("Running distributed pretraining...")
mp.spawn(
train_worker,
args=(world_size, config, single_dataset_filename),
nprocs=world_size,
join=True
)
if __name__ == "__main__":
main()