|
import streamlit as st |
|
import pandas as pd |
|
|
|
from autoML import autoML |
|
|
|
st.set_page_config(layout="wide") |
|
|
|
with st.sidebar: |
|
|
|
st.subheader('Demo Datasets') |
|
demo_but_class = st.button(label="Demo Classification on Wine Rate Dataset") |
|
demo_but_reg = st.button(label="Demo Regression on California House Dataset") |
|
|
|
st.subheader('AutoML your Dataset') |
|
|
|
csv = st.file_uploader(label='CSV file', type='csv') |
|
|
|
task = st.selectbox(label='Task', options=['Classification', 'Regression']) |
|
|
|
if task == 'Classification': |
|
metric_to_minimize_class = st.selectbox(label='Metric to minimize', options=['accuracy']) |
|
metric_to_minimize_reg = None |
|
if task == 'Regression': |
|
metric_to_minimize_reg = st.selectbox(label='Metric to minimize', options=['r2']) |
|
metric_to_minimize_class = None |
|
|
|
if csv: |
|
df = pd.read_csv(csv) |
|
df.to_csv('datasets/temp_file.csv', index=False) |
|
lst_features = df.columns |
|
label = st.selectbox(label='Label', options=lst_features) |
|
|
|
budget = st.text_area(label='Budget Time', value="5") |
|
start_but = st.button(label='AutoML') |
|
|
|
|
|
if start_but: |
|
|
|
autoML('datasets/temp_file.csv', task, budget, label, metric_to_minimize_class, metric_to_minimize_reg) |
|
|
|
|
|
if demo_but_class: |
|
|
|
autoML(csv='datasets/WineRate.csv', |
|
task='Classification', |
|
budget=budget, |
|
label='quality', |
|
metric_to_minimize_class='accuracy', |
|
metric_to_minimize_reg=None) |
|
|
|
|
|
if demo_but_reg: |
|
|
|
autoML(csv='datasets/house_california.csv', |
|
task='Regression', |
|
budget=budget, |
|
label='median_house_value', |
|
metric_to_minimize_class=None, |
|
metric_to_minimize_reg='r2') |
|
|