toxicity / app.py
thotran
rm error-badline
6423daf
raw
history blame
8.55 kB
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import TensorDataset, DataLoader, Dataset
from sklearn.metrics import roc_auc_score
import re
from stqdm import stqdm
from typing import *
import string
from sklearn.model_selection import train_test_split
from transformers import DistilBertTokenizer, AdamW
from transformers import DistilBertModel, DistilBertConfig, DistilBertForSequenceClassification
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import streamlit as st
st.write("Please be patient model training takes 20+ mins :P")
#config constants
SEED = 42
EPOCHS = 2
SEQ_SIZE = 150
BATCH_SIZE = 32
PRE_TRAINED_MODEL_NAME = "distilbert-base-uncased"
#import all data
data=pd.read_csv('./data/train.csv',engine='python',encoding='utf-8')
test=pd.read_csv('./data/test.csv',engine='python',encoding='utf-8')
test_labels=pd.read_csv('./data/test_labels.csv',engine='python',encoding='utf-8')
sub=pd.read_csv('./data/sample_submission.csv',engine='python',encoding='utf-8')
#setup data
data.drop(columns='id',inplace=True)
labels = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
#text proccessing
def cleanString(comment: str) -> str:
#contrationcs
comment = re.sub('n\'t', ' not', comment)
comment = re.sub('\'m', ' am', comment)
comment = re.sub('\'ve', ' have', comment)
comment = re.sub('\'s', ' is', comment)
#newline
comment = comment.replace('\n', ' \n ')
comment = comment.replace(r'([*!?\'])\1\1{2,}',r'\1\1\1')
comment = comment.replace(r'[0-9]', '')
comment = re.sub('[^a-zA-Z%]', ' ', comment)
comment = re.sub('%', '', comment)
comment = re.sub(r' +', ' ', comment)
comment = re.sub(r'\n', ' ', comment)
comment = re.sub(r' +', ' ', comment)
comment = comment.strip()
return comment
data.comment_text=data.comment_text.map(cleanString)
#tokenizer
tokenizer = DistilBertTokenizer.from_pretrained(PRE_TRAINED_MODEL_NAME)
token_lens = []
for txt in stqdm(data.comment_text,desc="tokenizing"):
tokens = tokenizer.encode(txt, max_length=512)
token_lens.append(len(tokens))
#test train split
df_train, df_test = train_test_split(data, test_size=0.15, random_state=SEED)
df_val, df_test = train_test_split(df_test, test_size=0.5, random_state=SEED)
#set pytorch dataset
class CommentDataset(Dataset):
def __init__(self, comments, targets, tokenizer, max_len):
assert len(comments) == len(targets)
self.comments = comments
self.targets = targets
self.tokenizer = tokenizer
self.max_len = max_len
def __len__(self):
return len(self.comments)
def __getitem__(self, item):
comment = str(self.comments[item])
target = self.targets[item]
encoding = self.tokenizer.encode_plus(comment,
add_special_tokens=True,
max_length=self.max_len,
return_token_type_ids=False,
pad_to_max_length=True,
# padding='max_length',
return_attention_mask=True,
return_tensors='pt',
)
return {'review_text': comment,
'input_ids': encoding['input_ids'].flatten(),
'attention_mask': encoding['attention_mask'].flatten(),
'targets': torch.tensor(target, dtype=torch.long)}
def create_data_loader(df: pd.DataFrame, tokenizer, max_len: int, batch_size: int):
ds = CommentDataset(comments=df.comment_text.to_numpy(),
targets=df[labels].to_numpy(),
tokenizer=tokenizer,
max_len=max_len)
return DataLoader(ds, batch_size=batch_size)
#helper function to set seed
def set_seed(seed):
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
set_seed(SEED)
#gpu usage
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
config = DistilBertConfig.from_pretrained(PRE_TRAINED_MODEL_NAME)
config.num_labels = len(labels)
config.problem_type = "multi_label_classification"
config.classifier_dropout = 0.2
config.return_dict = True
model = DistilBertForSequenceClassification(config)
model = model.to(device)
train_dataloader = create_data_loader(df=df_train, tokenizer=tokenizer, max_len=SEQ_SIZE, batch_size=BATCH_SIZE)
val_dataloader = create_data_loader(df=df_val, tokenizer=tokenizer, max_len=SEQ_SIZE, batch_size=1)
test_dataloader = create_data_loader(df=df_test, tokenizer=tokenizer, max_len=SEQ_SIZE, batch_size=1)
def train_epoch_for_hf(model, data_loader: DataLoader, device: torch.device, optimizer):
"""
hf = huggingface.
"""
model.train()
for batch in stqdm(data_loader, desc="training"):
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
targets = batch["targets"].float().to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(True):
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=targets)
loss = outputs.loss
loss.backward()
optimizer.step()
def evaluate_for_hf(model, data_loader: DataLoader, device: torch.device):
model.eval()
losses = []
score = None
for idx, batch in enumerate(stqdm(data_loader,desc="evaluating")):
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
targets = batch["targets"].float().to(device)
with torch.set_grad_enabled(False):
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=targets)
if idx == 0:
score = outputs.logits.cpu()
else:
score = torch.cat((score, outputs.logits.cpu()))
losses.append(outputs.loss.item())
return score, np.mean(losses)
optimizer = AdamW(model.parameters(), lr=2e-5)
best_val_loss = 9999.
print('====START TRAINING====')
#training here
#for epoch in stqdm(range(EPOCHS)):
# print('-' * 10)
# train_epoch_for_hf(model=model, data_loader=train_dataloader, optimizer=optimizer, device=device)
# _, tr_loss = evaluate_for_hf(model=model, data_loader=train_dataloader, device=device)
# val_pred, val_loss = evaluate_for_hf(model=model, data_loader=val_dataloader, device=device)
# y_pred_np = val_pred.numpy()
# val_auc = roc_auc_score(df_val[labels].to_numpy(), y_pred_np)
# if val_loss < best_val_loss:
# best_val_loss = val_loss
#torch.save(model.state_dict(), 'distill_bert.pt')
# print(f'Epoch {epoch + 1}/{EPOCHS}', f'train loss: {tr_loss:.4},', f'val loss: {val_loss:.4},', f'val auc: {val_auc:.4}')
# once model is saved and generated no need to re run :)
#PUSH MODEL TO HF
#from huggingface_hub import notebook_login
#notebook_login()
#model.push_to_hub("tweetbert")
#tokenizer.push_to_hub("tweetbert")
#LOAD MODEL
model=model = AutoModelForSequenceClassification.from_pretrained("thotranexe/tweetbert")
model = model.to(device)
#TEST MODEL
#test_pred, test_loss = evaluate_for_hf(model=model, data_loader=test_dataloader, device=device)
#print('====TEST RESULT====')
#print(f'Log loss: {test_loss:.5}')
#y_pred_np = test_pred.numpy()
#test_auc = roc_auc_score(df_test[labels].to_numpy(), y_pred_np)
#print(f'ROC AUC: {test_auc:.5}')
#test_src_id = test.iloc[:, 0]
#test.drop(columns='id', inplace=True)
#test_labels.drop(columns='id', inplace=True)
#test_src = pd.concat((test, test_labels), axis=1)
#MAKE PREDICTIONS
#test_src_dataloader = create_data_loader(df=test_src, tokenizer=tokenizer, max_len=SEQ_SIZE, batch_size=1)
#prediction, _ = evaluate_for_hf(model=model, data_loader=test_src_dataloader, device=device)
#prediction = torch.sigmoid(prediction).numpy()
#SAVE RESULTS INTO SUBMISSION DATAFRAME
#sub[labels] = prediction
#sub.insert(1,"tweet",data.comment_text,True)
#sub.to_csv("sub.csv", encoding='utf-8', index=False)
#^commented above code, saved to csv to reduce wait/comput time
sub=pd.read_csv('./data/sub.csv',engine='python',encoding='utf-8')
sub.drop(index="id")
st.dataframe(sub)