Spaces:
Runtime error
Runtime error
from transformers import AutoModelForSequenceClassification | |
from transformers import TFAutoModelForSequenceClassification | |
from transformers import AutoTokenizer, AutoConfig | |
import numpy as np | |
from scipy.special import softmax | |
import streamlit as st | |
st.title("Tho Tran - Milestone2") | |
# Preprocess text (username and link placeholders) | |
def preprocess(text): | |
new_text = [] | |
for t in text.split(" "): | |
t = '@user' if t.startswith('@') and len(t) > 1 else t | |
t = 'http' if t.startswith('http') else t | |
new_text.append(t) | |
return " ".join(new_text) | |
MODEL = f"cardiffnlp/twitter-xlm-roberta-base-sentiment" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
config = AutoConfig.from_pretrained(MODEL) | |
# PT | |
model = AutoModelForSequenceClassification.from_pretrained(MODEL) | |
model.save_pretrained(MODEL) | |
tokenizer.save_pretrained(MODEL) | |
text = st.text_input("Enter text here:","I love you") | |
text = preprocess(text) | |
encoded_input = tokenizer(text, return_tensors='pt') | |
output = model(**encoded_input) | |
scores = output[0][0].detach().numpy() | |
scores = softmax(scores) | |
# Print labels and scores | |
ranking = np.argsort(scores) | |
ranking = ranking[::-1] | |
for i in range(scores.shape[0]): | |
l = config.id2label[ranking[i]] | |
s = scores[ranking[i]] | |
# print(f"{i+1}) {l} {np.round(float(s), 4)}") | |
st.write(l,np.round(float(s),4)) | |
st.write("choosen model is https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment?text=T%27estimo%21") |