thotran commited on
Commit
203bbdd
·
1 Parent(s): a48c6f2

dropbox api

Browse files
Files changed (4) hide show
  1. .DS_Store +0 -0
  2. app.py +23 -12
  3. lfw/.DS_Store +0 -0
  4. requirements.txt +1 -0
.DS_Store ADDED
Binary file (6.15 kB). View file
 
app.py CHANGED
@@ -12,6 +12,10 @@ from json import JSONEncoder
12
  import numpy
13
  from sklearn.neighbors import NearestNeighbors
14
  import streamlit as st
 
 
 
 
15
 
16
  resnet=models.resnet50(pretrained=True)
17
  layer = resnet._modules.get('avgpool')
@@ -49,22 +53,29 @@ def get_vector(image):
49
  h.remove()
50
  # Return the feature vector
51
  return my_embedding
52
- if not d:
53
- for image in result:
54
- d[image]=get_vector(Image.open(image).convert('RGB')).numpy()
 
55
 
56
  st.write("cnn assignment")
57
- class NumpyArrayEncoder(JSONEncoder):
58
- def default(self, obj):
59
- if isinstance(obj, numpy.ndarray):
60
- return obj.tolist()
61
- return JSONEncoder.default(self, obj)
62
 
63
- with open("sample.json", "w") as outfile:
64
- json.dump(d, outfile,cls=NumpyArrayEncoder)
 
 
 
 
 
 
 
 
 
 
 
65
 
66
- with open('sample.json') as json_file:
67
- data = json.load(json_file)
68
 
69
  image=st.file_uploader(label="upload your own file",type="jpg")
70
  if image is None:
 
12
  import numpy
13
  from sklearn.neighbors import NearestNeighbors
14
  import streamlit as st
15
+ import dropbox
16
+ import io
17
+
18
+ dbx=dropbox.Dropbox("sl.Bc63AXYsCQRB4w0VqBACOKb1WvkPq8YNVhcvzbLYHa0d6BSaW2YEhejeYYz9M3jn1jSPG7DwziB9aqoAmnNevApdOPFkcknxy_dzlAG00PaKjiw3Qx8nnf3XXzMat0e8C3Fc7jg")
19
 
20
  resnet=models.resnet50(pretrained=True)
21
  layer = resnet._modules.get('avgpool')
 
53
  h.remove()
54
  # Return the feature vector
55
  return my_embedding
56
+
57
+ #if not d:
58
+ # for image in result:
59
+ # d[image]=get_vector(Image.open(image).convert('RGB')).numpy()
60
 
61
  st.write("cnn assignment")
 
 
 
 
 
62
 
63
+ #class NumpyArrayEncoder(JSONEncoder):
64
+ # def default(self, obj):
65
+ # if isinstance(obj, numpy.ndarray):
66
+ # return obj.tolist()
67
+ # return JSONEncoder.default(self, obj)
68
+
69
+ #with open("sample.json", "w") as outfile:
70
+ # json.dump(d, outfile,cls=NumpyArrayEncoder)
71
+
72
+
73
+
74
+
75
+ _, res = dbx.files_download("/sample.json")
76
 
77
+ with io.BytesIO(res.content) as stream:
78
+ data = json.load(stream)
79
 
80
  image=st.file_uploader(label="upload your own file",type="jpg")
81
  if image is None:
lfw/.DS_Store ADDED
Binary file (6.15 kB). View file
 
requirements.txt CHANGED
@@ -4,3 +4,4 @@ torchvision
4
  numpy
5
  scikit-learn
6
  streamlit
 
 
4
  numpy
5
  scikit-learn
6
  streamlit
7
+ dropbox