Spaces:
Build error
Build error
# v1: split from train_db_fixed.py. | |
# v2: support safetensors | |
import math | |
import os | |
import torch | |
import diffusers | |
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextConfig, logging | |
from diffusers import AutoencoderKL, DDIMScheduler, StableDiffusionPipeline # , UNet2DConditionModel | |
from safetensors.torch import load_file, save_file | |
from library.original_unet import UNet2DConditionModel | |
# DiffUsers版StableDiffusionのモデルパラメータ | |
NUM_TRAIN_TIMESTEPS = 1000 | |
BETA_START = 0.00085 | |
BETA_END = 0.0120 | |
UNET_PARAMS_MODEL_CHANNELS = 320 | |
UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4] | |
UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1] | |
UNET_PARAMS_IMAGE_SIZE = 64 # fixed from old invalid value `32` | |
UNET_PARAMS_IN_CHANNELS = 4 | |
UNET_PARAMS_OUT_CHANNELS = 4 | |
UNET_PARAMS_NUM_RES_BLOCKS = 2 | |
UNET_PARAMS_CONTEXT_DIM = 768 | |
UNET_PARAMS_NUM_HEADS = 8 | |
# UNET_PARAMS_USE_LINEAR_PROJECTION = False | |
VAE_PARAMS_Z_CHANNELS = 4 | |
VAE_PARAMS_RESOLUTION = 256 | |
VAE_PARAMS_IN_CHANNELS = 3 | |
VAE_PARAMS_OUT_CH = 3 | |
VAE_PARAMS_CH = 128 | |
VAE_PARAMS_CH_MULT = [1, 2, 4, 4] | |
VAE_PARAMS_NUM_RES_BLOCKS = 2 | |
# V2 | |
V2_UNET_PARAMS_ATTENTION_HEAD_DIM = [5, 10, 20, 20] | |
V2_UNET_PARAMS_CONTEXT_DIM = 1024 | |
# V2_UNET_PARAMS_USE_LINEAR_PROJECTION = True | |
# Diffusersの設定を読み込むための参照モデル | |
DIFFUSERS_REF_MODEL_ID_V1 = "runwayml/stable-diffusion-v1-5" | |
DIFFUSERS_REF_MODEL_ID_V2 = "stabilityai/stable-diffusion-2-1" | |
# region StableDiffusion->Diffusersの変換コード | |
# convert_original_stable_diffusion_to_diffusers をコピーして修正している(ASL 2.0) | |
def shave_segments(path, n_shave_prefix_segments=1): | |
""" | |
Removes segments. Positive values shave the first segments, negative shave the last segments. | |
""" | |
if n_shave_prefix_segments >= 0: | |
return ".".join(path.split(".")[n_shave_prefix_segments:]) | |
else: | |
return ".".join(path.split(".")[:n_shave_prefix_segments]) | |
def renew_resnet_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside resnets to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item.replace("in_layers.0", "norm1") | |
new_item = new_item.replace("in_layers.2", "conv1") | |
new_item = new_item.replace("out_layers.0", "norm2") | |
new_item = new_item.replace("out_layers.3", "conv2") | |
new_item = new_item.replace("emb_layers.1", "time_emb_proj") | |
new_item = new_item.replace("skip_connection", "conv_shortcut") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside resnets to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
new_item = new_item.replace("nin_shortcut", "conv_shortcut") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def renew_attention_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside attentions to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
# new_item = new_item.replace('norm.weight', 'group_norm.weight') | |
# new_item = new_item.replace('norm.bias', 'group_norm.bias') | |
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight') | |
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias') | |
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside attentions to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
new_item = new_item.replace("norm.weight", "group_norm.weight") | |
new_item = new_item.replace("norm.bias", "group_norm.bias") | |
if diffusers.__version__ < "0.17.0": | |
new_item = new_item.replace("q.weight", "query.weight") | |
new_item = new_item.replace("q.bias", "query.bias") | |
new_item = new_item.replace("k.weight", "key.weight") | |
new_item = new_item.replace("k.bias", "key.bias") | |
new_item = new_item.replace("v.weight", "value.weight") | |
new_item = new_item.replace("v.bias", "value.bias") | |
new_item = new_item.replace("proj_out.weight", "proj_attn.weight") | |
new_item = new_item.replace("proj_out.bias", "proj_attn.bias") | |
else: | |
new_item = new_item.replace("q.weight", "to_q.weight") | |
new_item = new_item.replace("q.bias", "to_q.bias") | |
new_item = new_item.replace("k.weight", "to_k.weight") | |
new_item = new_item.replace("k.bias", "to_k.bias") | |
new_item = new_item.replace("v.weight", "to_v.weight") | |
new_item = new_item.replace("v.bias", "to_v.bias") | |
new_item = new_item.replace("proj_out.weight", "to_out.0.weight") | |
new_item = new_item.replace("proj_out.bias", "to_out.0.bias") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def assign_to_checkpoint( | |
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None | |
): | |
""" | |
This does the final conversion step: take locally converted weights and apply a global renaming | |
to them. It splits attention layers, and takes into account additional replacements | |
that may arise. | |
Assigns the weights to the new checkpoint. | |
""" | |
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." | |
# Splits the attention layers into three variables. | |
if attention_paths_to_split is not None: | |
for path, path_map in attention_paths_to_split.items(): | |
old_tensor = old_checkpoint[path] | |
channels = old_tensor.shape[0] // 3 | |
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) | |
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 | |
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) | |
query, key, value = old_tensor.split(channels // num_heads, dim=1) | |
checkpoint[path_map["query"]] = query.reshape(target_shape) | |
checkpoint[path_map["key"]] = key.reshape(target_shape) | |
checkpoint[path_map["value"]] = value.reshape(target_shape) | |
for path in paths: | |
new_path = path["new"] | |
# These have already been assigned | |
if attention_paths_to_split is not None and new_path in attention_paths_to_split: | |
continue | |
# Global renaming happens here | |
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") | |
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") | |
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") | |
if additional_replacements is not None: | |
for replacement in additional_replacements: | |
new_path = new_path.replace(replacement["old"], replacement["new"]) | |
# proj_attn.weight has to be converted from conv 1D to linear | |
reshaping = False | |
if diffusers.__version__ < "0.17.0": | |
if "proj_attn.weight" in new_path: | |
reshaping = True | |
else: | |
if ".attentions." in new_path and ".0.to_" in new_path and old_checkpoint[path["old"]].ndim > 2: | |
reshaping = True | |
if reshaping: | |
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0] | |
else: | |
checkpoint[new_path] = old_checkpoint[path["old"]] | |
def conv_attn_to_linear(checkpoint): | |
keys = list(checkpoint.keys()) | |
attn_keys = ["query.weight", "key.weight", "value.weight"] | |
for key in keys: | |
if ".".join(key.split(".")[-2:]) in attn_keys: | |
if checkpoint[key].ndim > 2: | |
checkpoint[key] = checkpoint[key][:, :, 0, 0] | |
elif "proj_attn.weight" in key: | |
if checkpoint[key].ndim > 2: | |
checkpoint[key] = checkpoint[key][:, :, 0] | |
def linear_transformer_to_conv(checkpoint): | |
keys = list(checkpoint.keys()) | |
tf_keys = ["proj_in.weight", "proj_out.weight"] | |
for key in keys: | |
if ".".join(key.split(".")[-2:]) in tf_keys: | |
if checkpoint[key].ndim == 2: | |
checkpoint[key] = checkpoint[key].unsqueeze(2).unsqueeze(2) | |
def convert_ldm_unet_checkpoint(v2, checkpoint, config): | |
""" | |
Takes a state dict and a config, and returns a converted checkpoint. | |
""" | |
# extract state_dict for UNet | |
unet_state_dict = {} | |
unet_key = "model.diffusion_model." | |
keys = list(checkpoint.keys()) | |
for key in keys: | |
if key.startswith(unet_key): | |
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) | |
new_checkpoint = {} | |
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] | |
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] | |
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] | |
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] | |
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] | |
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] | |
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] | |
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] | |
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] | |
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] | |
# Retrieves the keys for the input blocks only | |
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) | |
input_blocks = { | |
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}." in key] for layer_id in range(num_input_blocks) | |
} | |
# Retrieves the keys for the middle blocks only | |
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) | |
middle_blocks = { | |
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}." in key] for layer_id in range(num_middle_blocks) | |
} | |
# Retrieves the keys for the output blocks only | |
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) | |
output_blocks = { | |
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}." in key] for layer_id in range(num_output_blocks) | |
} | |
for i in range(1, num_input_blocks): | |
block_id = (i - 1) // (config["layers_per_block"] + 1) | |
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) | |
resnets = [key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key] | |
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] | |
if f"input_blocks.{i}.0.op.weight" in unet_state_dict: | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( | |
f"input_blocks.{i}.0.op.weight" | |
) | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(f"input_blocks.{i}.0.op.bias") | |
paths = renew_resnet_paths(resnets) | |
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config) | |
if len(attentions): | |
paths = renew_attention_paths(attentions) | |
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} | |
assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config) | |
resnet_0 = middle_blocks[0] | |
attentions = middle_blocks[1] | |
resnet_1 = middle_blocks[2] | |
resnet_0_paths = renew_resnet_paths(resnet_0) | |
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) | |
resnet_1_paths = renew_resnet_paths(resnet_1) | |
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) | |
attentions_paths = renew_attention_paths(attentions) | |
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint(attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config) | |
for i in range(num_output_blocks): | |
block_id = i // (config["layers_per_block"] + 1) | |
layer_in_block_id = i % (config["layers_per_block"] + 1) | |
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] | |
output_block_list = {} | |
for layer in output_block_layers: | |
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) | |
if layer_id in output_block_list: | |
output_block_list[layer_id].append(layer_name) | |
else: | |
output_block_list[layer_id] = [layer_name] | |
if len(output_block_list) > 1: | |
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] | |
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] | |
resnet_0_paths = renew_resnet_paths(resnets) | |
paths = renew_resnet_paths(resnets) | |
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config) | |
# オリジナル: | |
# if ["conv.weight", "conv.bias"] in output_block_list.values(): | |
# index = list(output_block_list.values()).index(["conv.weight", "conv.bias"]) | |
# biasとweightの順番に依存しないようにする:もっといいやり方がありそうだが | |
for l in output_block_list.values(): | |
l.sort() | |
if ["conv.bias", "conv.weight"] in output_block_list.values(): | |
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"]) | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ | |
f"output_blocks.{i}.{index}.conv.bias" | |
] | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ | |
f"output_blocks.{i}.{index}.conv.weight" | |
] | |
# Clear attentions as they have been attributed above. | |
if len(attentions) == 2: | |
attentions = [] | |
if len(attentions): | |
paths = renew_attention_paths(attentions) | |
meta_path = { | |
"old": f"output_blocks.{i}.1", | |
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", | |
} | |
assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config) | |
else: | |
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) | |
for path in resnet_0_paths: | |
old_path = ".".join(["output_blocks", str(i), path["old"]]) | |
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) | |
new_checkpoint[new_path] = unet_state_dict[old_path] | |
# SDのv2では1*1のconv2dがlinearに変わっている | |
# 誤って Diffusers 側を conv2d のままにしてしまったので、変換必要 | |
if v2 and not config.get("use_linear_projection", False): | |
linear_transformer_to_conv(new_checkpoint) | |
return new_checkpoint | |
def convert_ldm_vae_checkpoint(checkpoint, config): | |
# extract state dict for VAE | |
vae_state_dict = {} | |
vae_key = "first_stage_model." | |
keys = list(checkpoint.keys()) | |
for key in keys: | |
if key.startswith(vae_key): | |
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) | |
# if len(vae_state_dict) == 0: | |
# # 渡されたcheckpointは.ckptから読み込んだcheckpointではなくvaeのstate_dict | |
# vae_state_dict = checkpoint | |
new_checkpoint = {} | |
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] | |
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] | |
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] | |
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] | |
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] | |
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] | |
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] | |
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] | |
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] | |
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] | |
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] | |
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] | |
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] | |
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] | |
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] | |
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] | |
# Retrieves the keys for the encoder down blocks only | |
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) | |
down_blocks = {layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)} | |
# Retrieves the keys for the decoder up blocks only | |
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) | |
up_blocks = {layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)} | |
for i in range(num_down_blocks): | |
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] | |
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( | |
f"encoder.down.{i}.downsample.conv.weight" | |
) | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( | |
f"encoder.down.{i}.downsample.conv.bias" | |
) | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] | |
paths = renew_vae_attention_paths(mid_attentions) | |
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
conv_attn_to_linear(new_checkpoint) | |
for i in range(num_up_blocks): | |
block_id = num_up_blocks - 1 - i | |
resnets = [key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key] | |
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: | |
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ | |
f"decoder.up.{block_id}.upsample.conv.weight" | |
] | |
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ | |
f"decoder.up.{block_id}.upsample.conv.bias" | |
] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] | |
paths = renew_vae_attention_paths(mid_attentions) | |
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
conv_attn_to_linear(new_checkpoint) | |
return new_checkpoint | |
def create_unet_diffusers_config(v2, use_linear_projection_in_v2=False): | |
""" | |
Creates a config for the diffusers based on the config of the LDM model. | |
""" | |
# unet_params = original_config.model.params.unet_config.params | |
block_out_channels = [UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT] | |
down_block_types = [] | |
resolution = 1 | |
for i in range(len(block_out_channels)): | |
block_type = "CrossAttnDownBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "DownBlock2D" | |
down_block_types.append(block_type) | |
if i != len(block_out_channels) - 1: | |
resolution *= 2 | |
up_block_types = [] | |
for i in range(len(block_out_channels)): | |
block_type = "CrossAttnUpBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "UpBlock2D" | |
up_block_types.append(block_type) | |
resolution //= 2 | |
config = dict( | |
sample_size=UNET_PARAMS_IMAGE_SIZE, | |
in_channels=UNET_PARAMS_IN_CHANNELS, | |
out_channels=UNET_PARAMS_OUT_CHANNELS, | |
down_block_types=tuple(down_block_types), | |
up_block_types=tuple(up_block_types), | |
block_out_channels=tuple(block_out_channels), | |
layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS, | |
cross_attention_dim=UNET_PARAMS_CONTEXT_DIM if not v2 else V2_UNET_PARAMS_CONTEXT_DIM, | |
attention_head_dim=UNET_PARAMS_NUM_HEADS if not v2 else V2_UNET_PARAMS_ATTENTION_HEAD_DIM, | |
# use_linear_projection=UNET_PARAMS_USE_LINEAR_PROJECTION if not v2 else V2_UNET_PARAMS_USE_LINEAR_PROJECTION, | |
) | |
if v2 and use_linear_projection_in_v2: | |
config["use_linear_projection"] = True | |
return config | |
def create_vae_diffusers_config(): | |
""" | |
Creates a config for the diffusers based on the config of the LDM model. | |
""" | |
# vae_params = original_config.model.params.first_stage_config.params.ddconfig | |
# _ = original_config.model.params.first_stage_config.params.embed_dim | |
block_out_channels = [VAE_PARAMS_CH * mult for mult in VAE_PARAMS_CH_MULT] | |
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) | |
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) | |
config = dict( | |
sample_size=VAE_PARAMS_RESOLUTION, | |
in_channels=VAE_PARAMS_IN_CHANNELS, | |
out_channels=VAE_PARAMS_OUT_CH, | |
down_block_types=tuple(down_block_types), | |
up_block_types=tuple(up_block_types), | |
block_out_channels=tuple(block_out_channels), | |
latent_channels=VAE_PARAMS_Z_CHANNELS, | |
layers_per_block=VAE_PARAMS_NUM_RES_BLOCKS, | |
) | |
return config | |
def convert_ldm_clip_checkpoint_v1(checkpoint): | |
keys = list(checkpoint.keys()) | |
text_model_dict = {} | |
for key in keys: | |
if key.startswith("cond_stage_model.transformer"): | |
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key] | |
return text_model_dict | |
def convert_ldm_clip_checkpoint_v2(checkpoint, max_length): | |
# 嫌になるくらい違うぞ! | |
def convert_key(key): | |
if not key.startswith("cond_stage_model"): | |
return None | |
# common conversion | |
key = key.replace("cond_stage_model.model.transformer.", "text_model.encoder.") | |
key = key.replace("cond_stage_model.model.", "text_model.") | |
if "resblocks" in key: | |
# resblocks conversion | |
key = key.replace(".resblocks.", ".layers.") | |
if ".ln_" in key: | |
key = key.replace(".ln_", ".layer_norm") | |
elif ".mlp." in key: | |
key = key.replace(".c_fc.", ".fc1.") | |
key = key.replace(".c_proj.", ".fc2.") | |
elif ".attn.out_proj" in key: | |
key = key.replace(".attn.out_proj.", ".self_attn.out_proj.") | |
elif ".attn.in_proj" in key: | |
key = None # 特殊なので後で処理する | |
else: | |
raise ValueError(f"unexpected key in SD: {key}") | |
elif ".positional_embedding" in key: | |
key = key.replace(".positional_embedding", ".embeddings.position_embedding.weight") | |
elif ".text_projection" in key: | |
key = None # 使われない??? | |
elif ".logit_scale" in key: | |
key = None # 使われない??? | |
elif ".token_embedding" in key: | |
key = key.replace(".token_embedding.weight", ".embeddings.token_embedding.weight") | |
elif ".ln_final" in key: | |
key = key.replace(".ln_final", ".final_layer_norm") | |
return key | |
keys = list(checkpoint.keys()) | |
new_sd = {} | |
for key in keys: | |
# remove resblocks 23 | |
if ".resblocks.23." in key: | |
continue | |
new_key = convert_key(key) | |
if new_key is None: | |
continue | |
new_sd[new_key] = checkpoint[key] | |
# attnの変換 | |
for key in keys: | |
if ".resblocks.23." in key: | |
continue | |
if ".resblocks" in key and ".attn.in_proj_" in key: | |
# 三つに分割 | |
values = torch.chunk(checkpoint[key], 3) | |
key_suffix = ".weight" if "weight" in key else ".bias" | |
key_pfx = key.replace("cond_stage_model.model.transformer.resblocks.", "text_model.encoder.layers.") | |
key_pfx = key_pfx.replace("_weight", "") | |
key_pfx = key_pfx.replace("_bias", "") | |
key_pfx = key_pfx.replace(".attn.in_proj", ".self_attn.") | |
new_sd[key_pfx + "q_proj" + key_suffix] = values[0] | |
new_sd[key_pfx + "k_proj" + key_suffix] = values[1] | |
new_sd[key_pfx + "v_proj" + key_suffix] = values[2] | |
# rename or add position_ids | |
ANOTHER_POSITION_IDS_KEY = "text_model.encoder.text_model.embeddings.position_ids" | |
if ANOTHER_POSITION_IDS_KEY in new_sd: | |
# waifu diffusion v1.4 | |
position_ids = new_sd[ANOTHER_POSITION_IDS_KEY] | |
del new_sd[ANOTHER_POSITION_IDS_KEY] | |
else: | |
position_ids = torch.Tensor([list(range(max_length))]).to(torch.int64) | |
new_sd["text_model.embeddings.position_ids"] = position_ids | |
return new_sd | |
# endregion | |
# region Diffusers->StableDiffusion の変換コード | |
# convert_diffusers_to_original_stable_diffusion をコピーして修正している(ASL 2.0) | |
def conv_transformer_to_linear(checkpoint): | |
keys = list(checkpoint.keys()) | |
tf_keys = ["proj_in.weight", "proj_out.weight"] | |
for key in keys: | |
if ".".join(key.split(".")[-2:]) in tf_keys: | |
if checkpoint[key].ndim > 2: | |
checkpoint[key] = checkpoint[key][:, :, 0, 0] | |
def convert_unet_state_dict_to_sd(v2, unet_state_dict): | |
unet_conversion_map = [ | |
# (stable-diffusion, HF Diffusers) | |
("time_embed.0.weight", "time_embedding.linear_1.weight"), | |
("time_embed.0.bias", "time_embedding.linear_1.bias"), | |
("time_embed.2.weight", "time_embedding.linear_2.weight"), | |
("time_embed.2.bias", "time_embedding.linear_2.bias"), | |
("input_blocks.0.0.weight", "conv_in.weight"), | |
("input_blocks.0.0.bias", "conv_in.bias"), | |
("out.0.weight", "conv_norm_out.weight"), | |
("out.0.bias", "conv_norm_out.bias"), | |
("out.2.weight", "conv_out.weight"), | |
("out.2.bias", "conv_out.bias"), | |
] | |
unet_conversion_map_resnet = [ | |
# (stable-diffusion, HF Diffusers) | |
("in_layers.0", "norm1"), | |
("in_layers.2", "conv1"), | |
("out_layers.0", "norm2"), | |
("out_layers.3", "conv2"), | |
("emb_layers.1", "time_emb_proj"), | |
("skip_connection", "conv_shortcut"), | |
] | |
unet_conversion_map_layer = [] | |
for i in range(4): | |
# loop over downblocks/upblocks | |
for j in range(2): | |
# loop over resnets/attentions for downblocks | |
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." | |
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." | |
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) | |
if i < 3: | |
# no attention layers in down_blocks.3 | |
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." | |
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." | |
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) | |
for j in range(3): | |
# loop over resnets/attentions for upblocks | |
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." | |
sd_up_res_prefix = f"output_blocks.{3*i + j}.0." | |
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) | |
if i > 0: | |
# no attention layers in up_blocks.0 | |
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." | |
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1." | |
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) | |
if i < 3: | |
# no downsample in down_blocks.3 | |
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." | |
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op." | |
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) | |
# no upsample in up_blocks.3 | |
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." | |
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." | |
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) | |
hf_mid_atn_prefix = "mid_block.attentions.0." | |
sd_mid_atn_prefix = "middle_block.1." | |
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) | |
for j in range(2): | |
hf_mid_res_prefix = f"mid_block.resnets.{j}." | |
sd_mid_res_prefix = f"middle_block.{2*j}." | |
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) | |
# buyer beware: this is a *brittle* function, | |
# and correct output requires that all of these pieces interact in | |
# the exact order in which I have arranged them. | |
mapping = {k: k for k in unet_state_dict.keys()} | |
for sd_name, hf_name in unet_conversion_map: | |
mapping[hf_name] = sd_name | |
for k, v in mapping.items(): | |
if "resnets" in k: | |
for sd_part, hf_part in unet_conversion_map_resnet: | |
v = v.replace(hf_part, sd_part) | |
mapping[k] = v | |
for k, v in mapping.items(): | |
for sd_part, hf_part in unet_conversion_map_layer: | |
v = v.replace(hf_part, sd_part) | |
mapping[k] = v | |
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} | |
if v2: | |
conv_transformer_to_linear(new_state_dict) | |
return new_state_dict | |
def controlnet_conversion_map(): | |
unet_conversion_map = [ | |
("time_embed.0.weight", "time_embedding.linear_1.weight"), | |
("time_embed.0.bias", "time_embedding.linear_1.bias"), | |
("time_embed.2.weight", "time_embedding.linear_2.weight"), | |
("time_embed.2.bias", "time_embedding.linear_2.bias"), | |
("input_blocks.0.0.weight", "conv_in.weight"), | |
("input_blocks.0.0.bias", "conv_in.bias"), | |
("middle_block_out.0.weight", "controlnet_mid_block.weight"), | |
("middle_block_out.0.bias", "controlnet_mid_block.bias"), | |
] | |
unet_conversion_map_resnet = [ | |
("in_layers.0", "norm1"), | |
("in_layers.2", "conv1"), | |
("out_layers.0", "norm2"), | |
("out_layers.3", "conv2"), | |
("emb_layers.1", "time_emb_proj"), | |
("skip_connection", "conv_shortcut"), | |
] | |
unet_conversion_map_layer = [] | |
for i in range(4): | |
for j in range(2): | |
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." | |
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." | |
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) | |
if i < 3: | |
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." | |
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." | |
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) | |
if i < 3: | |
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." | |
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op." | |
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) | |
hf_mid_atn_prefix = "mid_block.attentions.0." | |
sd_mid_atn_prefix = "middle_block.1." | |
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) | |
for j in range(2): | |
hf_mid_res_prefix = f"mid_block.resnets.{j}." | |
sd_mid_res_prefix = f"middle_block.{2*j}." | |
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) | |
controlnet_cond_embedding_names = ( | |
["conv_in"] + [f"blocks.{i}" for i in range(6)] + ["conv_out"] | |
) | |
for i, hf_prefix in enumerate(controlnet_cond_embedding_names): | |
hf_prefix = f"controlnet_cond_embedding.{hf_prefix}." | |
sd_prefix = f"input_hint_block.{i*2}." | |
unet_conversion_map_layer.append((sd_prefix, hf_prefix)) | |
for i in range(12): | |
hf_prefix = f"controlnet_down_blocks.{i}." | |
sd_prefix = f"zero_convs.{i}.0." | |
unet_conversion_map_layer.append((sd_prefix, hf_prefix)) | |
return unet_conversion_map, unet_conversion_map_resnet, unet_conversion_map_layer | |
def convert_controlnet_state_dict_to_sd(controlnet_state_dict): | |
unet_conversion_map, unet_conversion_map_resnet, unet_conversion_map_layer = controlnet_conversion_map() | |
mapping = {k: k for k in controlnet_state_dict.keys()} | |
for sd_name, diffusers_name in unet_conversion_map: | |
mapping[diffusers_name] = sd_name | |
for k, v in mapping.items(): | |
if "resnets" in k: | |
for sd_part, diffusers_part in unet_conversion_map_resnet: | |
v = v.replace(diffusers_part, sd_part) | |
mapping[k] = v | |
for k, v in mapping.items(): | |
for sd_part, diffusers_part in unet_conversion_map_layer: | |
v = v.replace(diffusers_part, sd_part) | |
mapping[k] = v | |
new_state_dict = {v: controlnet_state_dict[k] for k, v in mapping.items()} | |
return new_state_dict | |
def convert_controlnet_state_dict_to_diffusers(controlnet_state_dict): | |
unet_conversion_map, unet_conversion_map_resnet, unet_conversion_map_layer = controlnet_conversion_map() | |
mapping = {k: k for k in controlnet_state_dict.keys()} | |
for sd_name, diffusers_name in unet_conversion_map: | |
mapping[sd_name] = diffusers_name | |
for k, v in mapping.items(): | |
for sd_part, diffusers_part in unet_conversion_map_layer: | |
v = v.replace(sd_part, diffusers_part) | |
mapping[k] = v | |
for k, v in mapping.items(): | |
if "resnets" in v: | |
for sd_part, diffusers_part in unet_conversion_map_resnet: | |
v = v.replace(sd_part, diffusers_part) | |
mapping[k] = v | |
new_state_dict = {v: controlnet_state_dict[k] for k, v in mapping.items()} | |
return new_state_dict | |
# ================# | |
# VAE Conversion # | |
# ================# | |
def reshape_weight_for_sd(w): | |
# convert HF linear weights to SD conv2d weights | |
return w.reshape(*w.shape, 1, 1) | |
def convert_vae_state_dict(vae_state_dict): | |
vae_conversion_map = [ | |
# (stable-diffusion, HF Diffusers) | |
("nin_shortcut", "conv_shortcut"), | |
("norm_out", "conv_norm_out"), | |
("mid.attn_1.", "mid_block.attentions.0."), | |
] | |
for i in range(4): | |
# down_blocks have two resnets | |
for j in range(2): | |
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}." | |
sd_down_prefix = f"encoder.down.{i}.block.{j}." | |
vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) | |
if i < 3: | |
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0." | |
sd_downsample_prefix = f"down.{i}.downsample." | |
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) | |
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." | |
sd_upsample_prefix = f"up.{3-i}.upsample." | |
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) | |
# up_blocks have three resnets | |
# also, up blocks in hf are numbered in reverse from sd | |
for j in range(3): | |
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}." | |
sd_up_prefix = f"decoder.up.{3-i}.block.{j}." | |
vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) | |
# this part accounts for mid blocks in both the encoder and the decoder | |
for i in range(2): | |
hf_mid_res_prefix = f"mid_block.resnets.{i}." | |
sd_mid_res_prefix = f"mid.block_{i+1}." | |
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) | |
if diffusers.__version__ < "0.17.0": | |
vae_conversion_map_attn = [ | |
# (stable-diffusion, HF Diffusers) | |
("norm.", "group_norm."), | |
("q.", "query."), | |
("k.", "key."), | |
("v.", "value."), | |
("proj_out.", "proj_attn."), | |
] | |
else: | |
vae_conversion_map_attn = [ | |
# (stable-diffusion, HF Diffusers) | |
("norm.", "group_norm."), | |
("q.", "to_q."), | |
("k.", "to_k."), | |
("v.", "to_v."), | |
("proj_out.", "to_out.0."), | |
] | |
mapping = {k: k for k in vae_state_dict.keys()} | |
for k, v in mapping.items(): | |
for sd_part, hf_part in vae_conversion_map: | |
v = v.replace(hf_part, sd_part) | |
mapping[k] = v | |
for k, v in mapping.items(): | |
if "attentions" in k: | |
for sd_part, hf_part in vae_conversion_map_attn: | |
v = v.replace(hf_part, sd_part) | |
mapping[k] = v | |
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()} | |
weights_to_convert = ["q", "k", "v", "proj_out"] | |
for k, v in new_state_dict.items(): | |
for weight_name in weights_to_convert: | |
if f"mid.attn_1.{weight_name}.weight" in k: | |
# print(f"Reshaping {k} for SD format: shape {v.shape} -> {v.shape} x 1 x 1") | |
new_state_dict[k] = reshape_weight_for_sd(v) | |
return new_state_dict | |
# endregion | |
# region 自作のモデル読み書きなど | |
def is_safetensors(path): | |
return os.path.splitext(path)[1].lower() == ".safetensors" | |
def load_checkpoint_with_text_encoder_conversion(ckpt_path, device="cpu"): | |
# text encoderの格納形式が違うモデルに対応する ('text_model'がない) | |
TEXT_ENCODER_KEY_REPLACEMENTS = [ | |
("cond_stage_model.transformer.embeddings.", "cond_stage_model.transformer.text_model.embeddings."), | |
("cond_stage_model.transformer.encoder.", "cond_stage_model.transformer.text_model.encoder."), | |
("cond_stage_model.transformer.final_layer_norm.", "cond_stage_model.transformer.text_model.final_layer_norm."), | |
] | |
if is_safetensors(ckpt_path): | |
checkpoint = None | |
state_dict = load_file(ckpt_path) # , device) # may causes error | |
else: | |
checkpoint = torch.load(ckpt_path, map_location=device) | |
if "state_dict" in checkpoint: | |
state_dict = checkpoint["state_dict"] | |
else: | |
state_dict = checkpoint | |
checkpoint = None | |
key_reps = [] | |
for rep_from, rep_to in TEXT_ENCODER_KEY_REPLACEMENTS: | |
for key in state_dict.keys(): | |
if key.startswith(rep_from): | |
new_key = rep_to + key[len(rep_from) :] | |
key_reps.append((key, new_key)) | |
for key, new_key in key_reps: | |
state_dict[new_key] = state_dict[key] | |
del state_dict[key] | |
return checkpoint, state_dict | |
# TODO dtype指定の動作が怪しいので確認する text_encoderを指定形式で作れるか未確認 | |
def load_models_from_stable_diffusion_checkpoint(v2, ckpt_path, device="cpu", dtype=None, unet_use_linear_projection_in_v2=True): | |
_, state_dict = load_checkpoint_with_text_encoder_conversion(ckpt_path, device) | |
# Convert the UNet2DConditionModel model. | |
unet_config = create_unet_diffusers_config(v2, unet_use_linear_projection_in_v2) | |
converted_unet_checkpoint = convert_ldm_unet_checkpoint(v2, state_dict, unet_config) | |
unet = UNet2DConditionModel(**unet_config).to(device) | |
info = unet.load_state_dict(converted_unet_checkpoint) | |
print("loading u-net:", info) | |
# Convert the VAE model. | |
vae_config = create_vae_diffusers_config() | |
converted_vae_checkpoint = convert_ldm_vae_checkpoint(state_dict, vae_config) | |
vae = AutoencoderKL(**vae_config).to(device) | |
info = vae.load_state_dict(converted_vae_checkpoint) | |
print("loading vae:", info) | |
# convert text_model | |
if v2: | |
converted_text_encoder_checkpoint = convert_ldm_clip_checkpoint_v2(state_dict, 77) | |
cfg = CLIPTextConfig( | |
vocab_size=49408, | |
hidden_size=1024, | |
intermediate_size=4096, | |
num_hidden_layers=23, | |
num_attention_heads=16, | |
max_position_embeddings=77, | |
hidden_act="gelu", | |
layer_norm_eps=1e-05, | |
dropout=0.0, | |
attention_dropout=0.0, | |
initializer_range=0.02, | |
initializer_factor=1.0, | |
pad_token_id=1, | |
bos_token_id=0, | |
eos_token_id=2, | |
model_type="clip_text_model", | |
projection_dim=512, | |
torch_dtype="float32", | |
transformers_version="4.25.0.dev0", | |
) | |
text_model = CLIPTextModel._from_config(cfg) | |
info = text_model.load_state_dict(converted_text_encoder_checkpoint) | |
else: | |
converted_text_encoder_checkpoint = convert_ldm_clip_checkpoint_v1(state_dict) | |
# logging.set_verbosity_error() # don't show annoying warning | |
# text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14").to(device) | |
# logging.set_verbosity_warning() | |
# print(f"config: {text_model.config}") | |
cfg = CLIPTextConfig( | |
vocab_size=49408, | |
hidden_size=768, | |
intermediate_size=3072, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
max_position_embeddings=77, | |
hidden_act="quick_gelu", | |
layer_norm_eps=1e-05, | |
dropout=0.0, | |
attention_dropout=0.0, | |
initializer_range=0.02, | |
initializer_factor=1.0, | |
pad_token_id=1, | |
bos_token_id=0, | |
eos_token_id=2, | |
model_type="clip_text_model", | |
projection_dim=768, | |
torch_dtype="float32", | |
) | |
text_model = CLIPTextModel._from_config(cfg) | |
info = text_model.load_state_dict(converted_text_encoder_checkpoint) | |
print("loading text encoder:", info) | |
return text_model, vae, unet | |
def get_model_version_str_for_sd1_sd2(v2, v_parameterization): | |
# only for reference | |
version_str = "sd" | |
if v2: | |
version_str += "_v2" | |
else: | |
version_str += "_v1" | |
if v_parameterization: | |
version_str += "_v" | |
return version_str | |
def convert_text_encoder_state_dict_to_sd_v2(checkpoint, make_dummy_weights=False): | |
def convert_key(key): | |
# position_idsの除去 | |
if ".position_ids" in key: | |
return None | |
# common | |
key = key.replace("text_model.encoder.", "transformer.") | |
key = key.replace("text_model.", "") | |
if "layers" in key: | |
# resblocks conversion | |
key = key.replace(".layers.", ".resblocks.") | |
if ".layer_norm" in key: | |
key = key.replace(".layer_norm", ".ln_") | |
elif ".mlp." in key: | |
key = key.replace(".fc1.", ".c_fc.") | |
key = key.replace(".fc2.", ".c_proj.") | |
elif ".self_attn.out_proj" in key: | |
key = key.replace(".self_attn.out_proj.", ".attn.out_proj.") | |
elif ".self_attn." in key: | |
key = None # 特殊なので後で処理する | |
else: | |
raise ValueError(f"unexpected key in DiffUsers model: {key}") | |
elif ".position_embedding" in key: | |
key = key.replace("embeddings.position_embedding.weight", "positional_embedding") | |
elif ".token_embedding" in key: | |
key = key.replace("embeddings.token_embedding.weight", "token_embedding.weight") | |
elif "final_layer_norm" in key: | |
key = key.replace("final_layer_norm", "ln_final") | |
return key | |
keys = list(checkpoint.keys()) | |
new_sd = {} | |
for key in keys: | |
new_key = convert_key(key) | |
if new_key is None: | |
continue | |
new_sd[new_key] = checkpoint[key] | |
# attnの変換 | |
for key in keys: | |
if "layers" in key and "q_proj" in key: | |
# 三つを結合 | |
key_q = key | |
key_k = key.replace("q_proj", "k_proj") | |
key_v = key.replace("q_proj", "v_proj") | |
value_q = checkpoint[key_q] | |
value_k = checkpoint[key_k] | |
value_v = checkpoint[key_v] | |
value = torch.cat([value_q, value_k, value_v]) | |
new_key = key.replace("text_model.encoder.layers.", "transformer.resblocks.") | |
new_key = new_key.replace(".self_attn.q_proj.", ".attn.in_proj_") | |
new_sd[new_key] = value | |
# 最後の層などを捏造するか | |
if make_dummy_weights: | |
print("make dummy weights for resblock.23, text_projection and logit scale.") | |
keys = list(new_sd.keys()) | |
for key in keys: | |
if key.startswith("transformer.resblocks.22."): | |
new_sd[key.replace(".22.", ".23.")] = new_sd[key].clone() # copyしないとsafetensorsの保存で落ちる | |
# Diffusersに含まれない重みを作っておく | |
new_sd["text_projection"] = torch.ones((1024, 1024), dtype=new_sd[keys[0]].dtype, device=new_sd[keys[0]].device) | |
new_sd["logit_scale"] = torch.tensor(1) | |
return new_sd | |
def save_stable_diffusion_checkpoint(v2, output_file, text_encoder, unet, ckpt_path, epochs, steps, save_dtype=None, vae=None): | |
if ckpt_path is not None: | |
# epoch/stepを参照する。またVAEがメモリ上にないときなど、もう一度VAEを含めて読み込む | |
checkpoint, state_dict = load_checkpoint_with_text_encoder_conversion(ckpt_path) | |
if checkpoint is None: # safetensors または state_dictのckpt | |
checkpoint = {} | |
strict = False | |
else: | |
strict = True | |
if "state_dict" in state_dict: | |
del state_dict["state_dict"] | |
else: | |
# 新しく作る | |
assert vae is not None, "VAE is required to save a checkpoint without a given checkpoint" | |
checkpoint = {} | |
state_dict = {} | |
strict = False | |
def update_sd(prefix, sd): | |
for k, v in sd.items(): | |
key = prefix + k | |
assert not strict or key in state_dict, f"Illegal key in save SD: {key}" | |
if save_dtype is not None: | |
v = v.detach().clone().to("cpu").to(save_dtype) | |
state_dict[key] = v | |
# Convert the UNet model | |
unet_state_dict = convert_unet_state_dict_to_sd(v2, unet.state_dict()) | |
update_sd("model.diffusion_model.", unet_state_dict) | |
# Convert the text encoder model | |
if v2: | |
make_dummy = ckpt_path is None # 参照元のcheckpointがない場合は最後の層を前の層から複製して作るなどダミーの重みを入れる | |
text_enc_dict = convert_text_encoder_state_dict_to_sd_v2(text_encoder.state_dict(), make_dummy) | |
update_sd("cond_stage_model.model.", text_enc_dict) | |
else: | |
text_enc_dict = text_encoder.state_dict() | |
update_sd("cond_stage_model.transformer.", text_enc_dict) | |
# Convert the VAE | |
if vae is not None: | |
vae_dict = convert_vae_state_dict(vae.state_dict()) | |
update_sd("first_stage_model.", vae_dict) | |
# Put together new checkpoint | |
key_count = len(state_dict.keys()) | |
new_ckpt = {"state_dict": state_dict} | |
# epoch and global_step are sometimes not int | |
try: | |
if "epoch" in checkpoint: | |
epochs += checkpoint["epoch"] | |
if "global_step" in checkpoint: | |
steps += checkpoint["global_step"] | |
except: | |
pass | |
new_ckpt["epoch"] = epochs | |
new_ckpt["global_step"] = steps | |
if is_safetensors(output_file): | |
# TODO Tensor以外のdictの値を削除したほうがいいか | |
save_file(state_dict, output_file) | |
else: | |
torch.save(new_ckpt, output_file) | |
return key_count | |
def save_diffusers_checkpoint(v2, output_dir, text_encoder, unet, pretrained_model_name_or_path, vae=None, use_safetensors=False): | |
if pretrained_model_name_or_path is None: | |
# load default settings for v1/v2 | |
if v2: | |
pretrained_model_name_or_path = DIFFUSERS_REF_MODEL_ID_V2 | |
else: | |
pretrained_model_name_or_path = DIFFUSERS_REF_MODEL_ID_V1 | |
scheduler = DDIMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler") | |
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer") | |
if vae is None: | |
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae") | |
pipeline = StableDiffusionPipeline( | |
unet=unet, | |
text_encoder=text_encoder, | |
vae=vae, | |
scheduler=scheduler, | |
tokenizer=tokenizer, | |
safety_checker=None, | |
feature_extractor=None, | |
requires_safety_checker=None, | |
) | |
pipeline.save_pretrained(output_dir, safe_serialization=use_safetensors) | |
VAE_PREFIX = "first_stage_model." | |
def load_vae(vae_id, dtype): | |
print(f"load VAE: {vae_id}") | |
if os.path.isdir(vae_id) or not os.path.isfile(vae_id): | |
# Diffusers local/remote | |
try: | |
vae = AutoencoderKL.from_pretrained(vae_id, subfolder=None, torch_dtype=dtype) | |
except EnvironmentError as e: | |
print(f"exception occurs in loading vae: {e}") | |
print("retry with subfolder='vae'") | |
vae = AutoencoderKL.from_pretrained(vae_id, subfolder="vae", torch_dtype=dtype) | |
return vae | |
# local | |
vae_config = create_vae_diffusers_config() | |
if vae_id.endswith(".bin"): | |
# SD 1.5 VAE on Huggingface | |
converted_vae_checkpoint = torch.load(vae_id, map_location="cpu") | |
else: | |
# StableDiffusion | |
vae_model = load_file(vae_id, "cpu") if is_safetensors(vae_id) else torch.load(vae_id, map_location="cpu") | |
vae_sd = vae_model["state_dict"] if "state_dict" in vae_model else vae_model | |
# vae only or full model | |
full_model = False | |
for vae_key in vae_sd: | |
if vae_key.startswith(VAE_PREFIX): | |
full_model = True | |
break | |
if not full_model: | |
sd = {} | |
for key, value in vae_sd.items(): | |
sd[VAE_PREFIX + key] = value | |
vae_sd = sd | |
del sd | |
# Convert the VAE model. | |
converted_vae_checkpoint = convert_ldm_vae_checkpoint(vae_sd, vae_config) | |
vae = AutoencoderKL(**vae_config) | |
vae.load_state_dict(converted_vae_checkpoint) | |
return vae | |
# endregion | |
def make_bucket_resolutions(max_reso, min_size=256, max_size=1024, divisible=64): | |
max_width, max_height = max_reso | |
max_area = (max_width // divisible) * (max_height // divisible) | |
resos = set() | |
size = int(math.sqrt(max_area)) * divisible | |
resos.add((size, size)) | |
size = min_size | |
while size <= max_size: | |
width = size | |
height = min(max_size, (max_area // (width // divisible)) * divisible) | |
resos.add((width, height)) | |
resos.add((height, width)) | |
# # make additional resos | |
# if width >= height and width - divisible >= min_size: | |
# resos.add((width - divisible, height)) | |
# resos.add((height, width - divisible)) | |
# if height >= width and height - divisible >= min_size: | |
# resos.add((width, height - divisible)) | |
# resos.add((height - divisible, width)) | |
size += divisible | |
resos = list(resos) | |
resos.sort() | |
return resos | |
if __name__ == "__main__": | |
resos = make_bucket_resolutions((512, 768)) | |
print(len(resos)) | |
print(resos) | |
aspect_ratios = [w / h for w, h in resos] | |
print(aspect_ratios) | |
ars = set() | |
for ar in aspect_ratios: | |
if ar in ars: | |
print("error! duplicate ar:", ar) | |
ars.add(ar) | |