Spaces:
Build error
Build error
import argparse | |
import os | |
import json | |
from pathlib import Path | |
from typing import List | |
from tqdm import tqdm | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
import torch | |
from torchvision import transforms | |
import library.model_util as model_util | |
import library.train_util as train_util | |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
IMAGE_TRANSFORMS = transforms.Compose( | |
[ | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]), | |
] | |
) | |
def collate_fn_remove_corrupted(batch): | |
"""Collate function that allows to remove corrupted examples in the | |
dataloader. It expects that the dataloader returns 'None' when that occurs. | |
The 'None's in the batch are removed. | |
""" | |
# Filter out all the Nones (corrupted examples) | |
batch = list(filter(lambda x: x is not None, batch)) | |
return batch | |
def get_latents(vae, key_and_images, weight_dtype): | |
img_tensors = [IMAGE_TRANSFORMS(image) for _, image in key_and_images] | |
img_tensors = torch.stack(img_tensors) | |
img_tensors = img_tensors.to(DEVICE, weight_dtype) | |
with torch.no_grad(): | |
latents = vae.encode(img_tensors).latent_dist.sample() | |
# check NaN | |
for (key, _), latents1 in zip(key_and_images, latents): | |
if torch.isnan(latents1).any(): | |
raise ValueError(f"NaN detected in latents of {key}") | |
return latents | |
def get_npz_filename_wo_ext(data_dir, image_key, is_full_path, flip, recursive): | |
if is_full_path: | |
base_name = os.path.splitext(os.path.basename(image_key))[0] | |
relative_path = os.path.relpath(os.path.dirname(image_key), data_dir) | |
else: | |
base_name = image_key | |
relative_path = "" | |
if flip: | |
base_name += "_flip" | |
if recursive and relative_path: | |
return os.path.join(data_dir, relative_path, base_name) | |
else: | |
return os.path.join(data_dir, base_name) | |
def main(args): | |
# assert args.bucket_reso_steps % 8 == 0, f"bucket_reso_steps must be divisible by 8 / bucket_reso_stepは8で割り切れる必要があります" | |
if args.bucket_reso_steps % 8 > 0: | |
print(f"resolution of buckets in training time is a multiple of 8 / 学習時の各bucketの解像度は8単位になります") | |
train_data_dir_path = Path(args.train_data_dir) | |
image_paths: List[str] = [str(p) for p in train_util.glob_images_pathlib(train_data_dir_path, args.recursive)] | |
print(f"found {len(image_paths)} images.") | |
if os.path.exists(args.in_json): | |
print(f"loading existing metadata: {args.in_json}") | |
with open(args.in_json, "rt", encoding="utf-8") as f: | |
metadata = json.load(f) | |
else: | |
print(f"no metadata / メタデータファイルがありません: {args.in_json}") | |
return | |
weight_dtype = torch.float32 | |
if args.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif args.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
vae = model_util.load_vae(args.model_name_or_path, weight_dtype) | |
vae.eval() | |
vae.to(DEVICE, dtype=weight_dtype) | |
# bucketのサイズを計算する | |
max_reso = tuple([int(t) for t in args.max_resolution.split(",")]) | |
assert len(max_reso) == 2, f"illegal resolution (not 'width,height') / 画像サイズに誤りがあります。'幅,高さ'で指定してください: {args.max_resolution}" | |
bucket_manager = train_util.BucketManager( | |
args.bucket_no_upscale, max_reso, args.min_bucket_reso, args.max_bucket_reso, args.bucket_reso_steps | |
) | |
if not args.bucket_no_upscale: | |
bucket_manager.make_buckets() | |
else: | |
print( | |
"min_bucket_reso and max_bucket_reso are ignored if bucket_no_upscale is set, because bucket reso is defined by image size automatically / bucket_no_upscaleが指定された場合は、bucketの解像度は画像サイズから自動計算されるため、min_bucket_resoとmax_bucket_resoは無視されます" | |
) | |
# 画像をひとつずつ適切なbucketに割り当てながらlatentを計算する | |
img_ar_errors = [] | |
def process_batch(is_last): | |
for bucket in bucket_manager.buckets: | |
if (is_last and len(bucket) > 0) or len(bucket) >= args.batch_size: | |
latents = get_latents(vae, [(key, img) for key, img, _, _ in bucket], weight_dtype) | |
assert ( | |
latents.shape[2] == bucket[0][1].shape[0] // 8 and latents.shape[3] == bucket[0][1].shape[1] // 8 | |
), f"latent shape {latents.shape}, {bucket[0][1].shape}" | |
for (image_key, _, original_size, crop_left_top), latent in zip(bucket, latents): | |
npz_file_name = get_npz_filename_wo_ext(args.train_data_dir, image_key, args.full_path, False, args.recursive) | |
train_util.save_latents_to_disk(npz_file_name, latent, original_size, crop_left_top) | |
# flip | |
if args.flip_aug: | |
latents = get_latents( | |
vae, [(key, img[:, ::-1].copy()) for key, img, _, _ in bucket], weight_dtype | |
) # copyがないとTensor変換できない | |
for (image_key, _, original_size, crop_left_top), latent in zip(bucket, latents): | |
npz_file_name = get_npz_filename_wo_ext( | |
args.train_data_dir, image_key, args.full_path, True, args.recursive | |
) | |
train_util.save_latents_to_disk(npz_file_name, latent, original_size, crop_left_top) | |
else: | |
# remove existing flipped npz | |
for image_key, _ in bucket: | |
npz_file_name = ( | |
get_npz_filename_wo_ext(args.train_data_dir, image_key, args.full_path, True, args.recursive) + ".npz" | |
) | |
if os.path.isfile(npz_file_name): | |
print(f"remove existing flipped npz / 既存のflipされたnpzファイルを削除します: {npz_file_name}") | |
os.remove(npz_file_name) | |
bucket.clear() | |
# 読み込みの高速化のためにDataLoaderを使うオプション | |
if args.max_data_loader_n_workers is not None: | |
dataset = train_util.ImageLoadingDataset(image_paths) | |
data = torch.utils.data.DataLoader( | |
dataset, | |
batch_size=1, | |
shuffle=False, | |
num_workers=args.max_data_loader_n_workers, | |
collate_fn=collate_fn_remove_corrupted, | |
drop_last=False, | |
) | |
else: | |
data = [[(None, ip)] for ip in image_paths] | |
bucket_counts = {} | |
for data_entry in tqdm(data, smoothing=0.0): | |
if data_entry[0] is None: | |
continue | |
img_tensor, image_path = data_entry[0] | |
if img_tensor is not None: | |
image = transforms.functional.to_pil_image(img_tensor) | |
else: | |
try: | |
image = Image.open(image_path) | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
except Exception as e: | |
print(f"Could not load image path / 画像を読み込めません: {image_path}, error: {e}") | |
continue | |
image_key = image_path if args.full_path else os.path.splitext(os.path.basename(image_path))[0] | |
if image_key not in metadata: | |
metadata[image_key] = {} | |
# 本当はこのあとの部分もDataSetに持っていけば高速化できるがいろいろ大変 | |
reso, resized_size, ar_error = bucket_manager.select_bucket(image.width, image.height) | |
img_ar_errors.append(abs(ar_error)) | |
bucket_counts[reso] = bucket_counts.get(reso, 0) + 1 | |
# メタデータに記録する解像度はlatent単位とするので、8単位で切り捨て | |
metadata[image_key]["train_resolution"] = (reso[0] - reso[0] % 8, reso[1] - reso[1] % 8) | |
if not args.bucket_no_upscale: | |
# upscaleを行わないときには、resize後のサイズは、bucketのサイズと、縦横どちらかが同じであることを確認する | |
assert ( | |
resized_size[0] == reso[0] or resized_size[1] == reso[1] | |
), f"internal error, resized size not match: {reso}, {resized_size}, {image.width}, {image.height}" | |
assert ( | |
resized_size[0] >= reso[0] and resized_size[1] >= reso[1] | |
), f"internal error, resized size too small: {reso}, {resized_size}, {image.width}, {image.height}" | |
assert ( | |
resized_size[0] >= reso[0] and resized_size[1] >= reso[1] | |
), f"internal error resized size is small: {resized_size}, {reso}" | |
# 既に存在するファイルがあればshape等を確認して同じならskipする | |
if args.skip_existing: | |
npz_files = [get_npz_filename_wo_ext(args.train_data_dir, image_key, args.full_path, False, args.recursive) + ".npz"] | |
if args.flip_aug: | |
npz_files.append( | |
get_npz_filename_wo_ext(args.train_data_dir, image_key, args.full_path, True, args.recursive) + ".npz" | |
) | |
found = True | |
for npz_file in npz_files: | |
if not os.path.exists(npz_file): | |
found = False | |
break | |
latents, _, _ = train_util.load_latents_from_disk(npz_file) | |
if latents is None: # old version | |
found = False | |
break | |
if latents.shape[1] != reso[1] // 8 or latents.shape[2] != reso[0] // 8: # latentsのshapeを確認 | |
found = False | |
break | |
if found: | |
continue | |
# 画像をリサイズしてトリミングする | |
# PILにinter_areaがないのでcv2で…… | |
image = np.array(image) | |
if resized_size[0] != image.shape[1] or resized_size[1] != image.shape[0]: # リサイズ処理が必要? | |
image = cv2.resize(image, resized_size, interpolation=cv2.INTER_AREA) | |
trim_left = 0 | |
if resized_size[0] > reso[0]: | |
trim_size = resized_size[0] - reso[0] | |
image = image[:, trim_size // 2 : trim_size // 2 + reso[0]] | |
trim_left = trim_size // 2 | |
trim_top = 0 | |
if resized_size[1] > reso[1]: | |
trim_size = resized_size[1] - reso[1] | |
image = image[trim_size // 2 : trim_size // 2 + reso[1]] | |
trim_top = trim_size // 2 | |
original_size_wh = (resized_size[0], resized_size[1]) | |
# target_size_wh = (reso[0], reso[1]) | |
crop_left_top = (trim_left, trim_top) | |
assert ( | |
image.shape[0] == reso[1] and image.shape[1] == reso[0] | |
), f"internal error, illegal trimmed size: {image.shape}, {reso}" | |
# # debug | |
# cv2.imwrite(f"r:\\test\\img_{len(img_ar_errors)}.jpg", image[:, :, ::-1]) | |
# バッチへ追加 | |
bucket_manager.add_image(reso, (image_key, image, original_size_wh, crop_left_top)) | |
# バッチを推論するか判定して推論する | |
process_batch(False) | |
# 残りを処理する | |
process_batch(True) | |
bucket_manager.sort() | |
for i, reso in enumerate(bucket_manager.resos): | |
count = bucket_counts.get(reso, 0) | |
if count > 0: | |
print(f"bucket {i} {reso}: {count}") | |
img_ar_errors = np.array(img_ar_errors) | |
print(f"mean ar error: {np.mean(img_ar_errors)}") | |
# metadataを書き出して終わり | |
print(f"writing metadata: {args.out_json}") | |
with open(args.out_json, "wt", encoding="utf-8") as f: | |
json.dump(metadata, f, indent=2) | |
print("done!") | |
def setup_parser() -> argparse.ArgumentParser: | |
parser = argparse.ArgumentParser() | |
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ") | |
parser.add_argument("in_json", type=str, help="metadata file to input / 読み込むメタデータファイル") | |
parser.add_argument("out_json", type=str, help="metadata file to output / メタデータファイル書き出し先") | |
parser.add_argument("model_name_or_path", type=str, help="model name or path to encode latents / latentを取得するためのモデル") | |
parser.add_argument("--v2", action="store_true", help="not used (for backward compatibility) / 使用されません(互換性のため残してあります)") | |
parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ") | |
parser.add_argument( | |
"--max_data_loader_n_workers", | |
type=int, | |
default=None, | |
help="enable image reading by DataLoader with this number of workers (faster) / DataLoaderによる画像読み込みを有効にしてこのワーカー数を適用する(読み込みを高速化)", | |
) | |
parser.add_argument( | |
"--max_resolution", | |
type=str, | |
default="512,512", | |
help="max resolution in fine tuning (width,height) / fine tuning時の最大画像サイズ 「幅,高さ」(使用メモリ量に関係します)", | |
) | |
parser.add_argument("--min_bucket_reso", type=int, default=256, help="minimum resolution for buckets / bucketの最小解像度") | |
parser.add_argument("--max_bucket_reso", type=int, default=1024, help="maximum resolution for buckets / bucketの最小解像度") | |
parser.add_argument( | |
"--bucket_reso_steps", | |
type=int, | |
default=64, | |
help="steps of resolution for buckets, divisible by 8 is recommended / bucketの解像度の単位、8で割り切れる値を推奨します", | |
) | |
parser.add_argument( | |
"--bucket_no_upscale", action="store_true", help="make bucket for each image without upscaling / 画像を拡大せずbucketを作成します" | |
) | |
parser.add_argument( | |
"--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度" | |
) | |
parser.add_argument( | |
"--full_path", | |
action="store_true", | |
help="use full path as image-key in metadata (supports multiple directories) / メタデータで画像キーをフルパスにする(複数の学習画像ディレクトリに対応)", | |
) | |
parser.add_argument( | |
"--flip_aug", action="store_true", help="flip augmentation, save latents for flipped images / 左右反転した画像もlatentを取得、保存する" | |
) | |
parser.add_argument( | |
"--skip_existing", | |
action="store_true", | |
help="skip images if npz already exists (both normal and flipped exists if flip_aug is enabled) / npzが既に存在する画像をスキップする(flip_aug有効時は通常、反転の両方が存在する画像をスキップ)", | |
) | |
parser.add_argument( | |
"--recursive", | |
action="store_true", | |
help="recursively look for training tags in all child folders of train_data_dir / train_data_dirのすべての子フォルダにある学習タグを再帰的に探す", | |
) | |
return parser | |
if __name__ == "__main__": | |
parser = setup_parser() | |
args = parser.parse_args() | |
main(args) | |