Spaces:
Build error
Build error
"""FastAPI endpoint | |
To run locally use 'uvicorn app:app --host localhost --port 7860' | |
or | |
`python -m uvicorn app:app --reload --host localhost --port 7860` | |
""" | |
import ast | |
import mathactive.microlessons.num_one as num_one_quiz | |
from fastapi import FastAPI, Request | |
from fastapi.responses import JSONResponse | |
from fastapi.staticfiles import StaticFiles | |
from fastapi.templating import Jinja2Templates | |
from mathtext.sentiment import sentiment | |
from mathtext.text2int import text2int | |
from pydantic import BaseModel | |
from mathtext_fastapi.logging import prepare_message_data_for_logging | |
from mathtext_fastapi.conversation_manager import manage_conversation_response | |
from mathtext_fastapi.v2_conversation_manager import manage_conversation_response | |
from mathtext_fastapi.nlu import evaluate_message_with_nlu | |
from mathtext_fastapi.nlu import run_intent_classification | |
app = FastAPI() | |
app.mount("/static", StaticFiles(directory="static"), name="static") | |
templates = Jinja2Templates(directory="templates") | |
class Text(BaseModel): | |
content: str = "" | |
def home(request: Request): | |
return templates.TemplateResponse("home.html", {"request": request}) | |
def hello(content: Text = None): | |
content = {"message": f"Hello {content.content}!"} | |
return JSONResponse(content=content) | |
def sentiment_analysis_ep(content: Text = None): | |
ml_response = sentiment(content.content) | |
content = {"message": ml_response} | |
return JSONResponse(content=content) | |
def text2int_ep(content: Text = None): | |
ml_response = text2int(content.content) | |
content = {"message": ml_response} | |
return JSONResponse(content=content) | |
async def programmatic_message_manager(request: Request): | |
""" | |
Calls conversation management function to determine the next state | |
Input | |
request.body: dict - message data for the most recent user response | |
{ | |
"author_id": "+47897891", | |
"contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09", | |
"author_type": "OWNER", | |
"message_body": "a test message", | |
"message_direction": "inbound", | |
"message_id": "ABJAK64jlk3-agjkl2QHFAFH", | |
"message_inserted_at": "2022-07-05T04:00:34.03352Z", | |
"message_updated_at": "2023-02-14T03:54:19.342950Z", | |
} | |
Output | |
context: dict - the information for the current state | |
{ | |
"user": "47897891", | |
"state": "welcome-message-state", | |
"bot_message": "Welcome to Rori!", | |
"user_message": "", | |
"type": "ask" | |
} | |
""" | |
data_dict = await request.json() | |
context = manage_conversation_response(data_dict) | |
return JSONResponse(context) | |
async def programmatic_message_manager(request: Request): | |
""" | |
Calls conversation management function to determine the next state | |
Input | |
request.body: dict - message data for the most recent user response | |
{ | |
"author_id": "+47897891", | |
"contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09", | |
"author_type": "OWNER", | |
"message_body": "a test message", | |
"message_direction": "inbound", | |
"message_id": "ABJAK64jlk3-agjkl2QHFAFH", | |
"message_inserted_at": "2022-07-05T04:00:34.03352Z", | |
"message_updated_at": "2023-02-14T03:54:19.342950Z", | |
} | |
Output | |
context: dict - the information for the current state | |
{ | |
"user": "47897891", | |
"state": "welcome-message-state", | |
"bot_message": "Welcome to Rori!", | |
"user_message": "", | |
"type": "ask" | |
} | |
""" | |
data_dict = await request.json() | |
context = manage_conversation_response(data_dict) | |
return JSONResponse(context) | |
def intent_classification_ep(content: Text = None): | |
ml_response = run_intent_classification(content.content) | |
content = {"message": ml_response} | |
return JSONResponse(content=content) | |
async def evaluate_user_message_with_nlu_api(request: Request): | |
""" Calls nlu evaluation and returns the nlu_response | |
Input | |
- request.body: json - message data for the most recent user response | |
Output | |
- int_data_dict or sent_data_dict: dict - the type of NLU run and result | |
{'type':'integer', 'data': '8', 'confidence': 0} | |
{'type':'sentiment', 'data': 'negative', 'confidence': 0.99} | |
""" | |
data_dict = await request.json() | |
message_data = data_dict.get('message_data', '') | |
nlu_response = evaluate_message_with_nlu(message_data) | |
return JSONResponse(content=nlu_response) | |
async def num_one(request: Request): | |
""" | |
Input: | |
{ | |
"user_id": 1, | |
"message_text": 5, | |
} | |
Output: | |
{ | |
'messages': | |
["Let's", 'practice', 'counting', '', '', '46...', '47...', '48...', '49', '', '', 'After', '49,', 'what', 'is', 'the', 'next', 'number', 'you', 'will', 'count?\n46,', '47,', '48,', '49'], | |
'input_prompt': '50', | |
'state': 'question' | |
} | |
""" | |
data_dict = await request.json() | |
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) | |
user_id = message_data['user_id'] | |
message_text = message_data['message_text'] | |
return num_one_quiz.process_user_message(user_id, message_text) | |
async def ask_math_question(request: Request): | |
"""Generate a question data | |
Input | |
{ | |
'difficulty': 0.1, | |
'do_increase': True | False | |
} | |
Output | |
{ | |
'text': 'What is 1+2?', | |
'difficulty': 0.2, | |
'question_numbers': [3, 1, 4] | |
} | |
""" | |
data_dict = await request.json() | |
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) | |
difficulty = message_data['difficulty'] | |
do_increase = message_data['do_increase'] | |
return JSONResponse(generators.start_interactive_math(difficulty, do_increase)) | |
async def get_hint(request: Request): | |
"""Generate a hint data | |
Input | |
{ | |
'start': 5, | |
'step': 1, | |
'difficulty': 0.1 | |
} | |
Output | |
{ | |
'text': 'What number is greater than 4 and less than 6?', | |
'difficulty': 0.1, | |
'question_numbers': [5, 1, 6] | |
} | |
""" | |
data_dict = await request.json() | |
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) | |
start = message_data['start'] | |
step = message_data['step'] | |
difficulty = message_data['difficulty'] | |
return JSONResponse(hints.generate_hint(start, step, difficulty)) | |
async def ask_math_question(request: Request): | |
"""Generate a question data | |
Input | |
{ | |
'start': 5, | |
'step': 1, | |
'question_num': 1 # optional | |
} | |
Output | |
{ | |
'question': 'What is 1+2?', | |
'start': 5, | |
'step': 1, | |
'answer': 6 | |
} | |
""" | |
data_dict = await request.json() | |
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) | |
start = message_data['start'] | |
step = message_data['step'] | |
arg_tuple = (start, step) | |
try: | |
question_num = message_data['question_num'] | |
arg_tuple += (question_num,) | |
except KeyError: | |
pass | |
return JSONResponse(questions.generate_question_data(*arg_tuple)) | |
async def get_hint(request: Request): | |
"""Generate a number matching difficulty | |
Input | |
{ | |
'difficulty': 0.01, | |
'do_increase': True | |
} | |
Output - value from 0.01 to 0.99 inclusively: | |
0.09 | |
""" | |
data_dict = await request.json() | |
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) | |
difficulty = message_data['difficulty'] | |
do_increase = message_data['do_increase'] | |
return JSONResponse(utils.get_next_difficulty(difficulty, do_increase)) | |
async def get_hint(request: Request): | |
"""Generate a start and step values | |
Input | |
{ | |
'difficulty': 0.01, | |
'path_to_csv_file': 'scripts/quiz/data.csv' # optional | |
} | |
Output - tuple (start, step): | |
(5, 1) | |
""" | |
data_dict = await request.json() | |
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) | |
difficulty = message_data['difficulty'] | |
arg_tuple = (difficulty,) | |
try: | |
path_to_csv_file = message_data['path_to_csv_file'] | |
arg_tuple += (path_to_csv_file,) | |
except KeyError: | |
pass | |
return JSONResponse(utils.get_next_difficulty(*arg_tuple)) | |
async def generate_question(request: Request): | |
"""Generate a sequence from start, step and optional separator parameter | |
Input | |
{ | |
'start': 5, | |
'step': 1, | |
'sep': ', ' # optional | |
} | |
Output | |
5, 6, 7 | |
""" | |
data_dict = await request.json() | |
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) | |
start = message_data['start'] | |
step = message_data['step'] | |
arg_tuple = (start, step) | |
try: | |
sep = message_data['sep'] | |
arg_tuple += (sep,) | |
except KeyError: | |
pass | |
return JSONResponse(utils.convert_sequence_to_string(*arg_tuple)) | |