Spaces:
Build error
Build error
"""FastAPI endpoint | |
To run locally use 'uvicorn app:app --host localhost --port 7860' | |
""" | |
from fastapi import FastAPI, Request | |
from fastapi.responses import JSONResponse | |
from fastapi.staticfiles import StaticFiles | |
from fastapi.templating import Jinja2Templates | |
from pydantic import BaseModel | |
from modules.sentiment import sentiment | |
from modules.text2int import text2int | |
from modules.nlu import prepare_message_data_for_logging | |
# FIXME: | |
# from mathtext.text2int import text2int | |
app = FastAPI() | |
app.mount("/static", StaticFiles(directory="static"), name="static") | |
templates = Jinja2Templates(directory="templates") | |
class Text(BaseModel): | |
content: str = "" | |
def home(request: Request): | |
return templates.TemplateResponse("home.html", {"request": request}) | |
def hello(content: Text = None): | |
content = {"message": f"Hello {content.content}!"} | |
return JSONResponse(content=content) | |
def sentiment_analysis_ep(content: Text = None): | |
ml_response = sentiment(content.content) | |
content = {"message": ml_response} | |
return JSONResponse(content=content) | |
def text2int_ep(content: Text = None): | |
ml_response = text2int(content.content) | |
content = {"message": ml_response} | |
return JSONResponse(content=content) | |
async def evaluate_user_message_with_nlu_api(request: Request): | |
""" Calls NLU APIs on the most recent user message from Turn.io message data and logs the message data | |
Input | |
- request.body: a json object of message data for the most recent user response | |
Output | |
- int_data_dict or sent_data_dict: A dictionary telling the type of NLU run and the resulting data | |
{'type':'integer', 'data': '8'} | |
{'type':'sentiment', 'data': 'negative'} | |
""" | |
message_data = await request.json() | |
message_text = message_data['message']['text']['body'].lower() | |
int_api_resp = text2int(message_text) | |
if int_api_resp == '32202': | |
sentiment_api_resp = sentiment(message_text) | |
# [{'label': 'POSITIVE', 'score': 0.991188645362854}] | |
sent_data_dict = {'type': 'sentiment', 'data': sentiment_api_resp[0]['label']} | |
return JSONResponse(content={'type': 'sentiment', 'data': 'negative'}) | |
prepare_message_data_for_logging(message_data) | |
int_data_dict = {'type': 'integer', 'data': int_api_resp} | |
return JSONResponse(content=int_data_dict) | |