Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,38 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
from keras.models import load_model
|
4 |
from PIL import Image
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
def predict_pokemon(image):
|
9 |
-
# Resize and preprocess the image
|
10 |
-
image = Image.fromarray((image * 255).astype(np.uint8))
|
11 |
-
image = image.resize((224, 224))
|
12 |
-
image_array = np.asarray(image)
|
13 |
-
image_array = image_array / 255.0
|
14 |
-
|
15 |
-
|
16 |
-
prediction = model.predict(np.expand_dims(image_array, axis=0))
|
17 |
-
predicted_class = np.argmax(prediction)
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
|
|
22 |
|
23 |
-
|
24 |
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
|
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
|
|
|
1 |
+
|
2 |
import gradio as gr
|
3 |
+
import tensorflow as tf
|
|
|
4 |
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
|
7 |
+
labels = ['Haunter', 'Gengar', 'Ditto', 'Vulpix']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
def predict_pokemon_type(uploaded_file):
|
10 |
+
if uploaded_file is None:
|
11 |
+
return "No file uploaded.", None, "No prediction"
|
12 |
|
13 |
+
model = tf.keras.models.load_model('pokemon-model_2_transferlearning.keras')
|
14 |
|
15 |
+
# Load the image from the file path
|
16 |
+
with Image.open(uploaded_file) as img:
|
17 |
+
img = img.resize((150, 150))
|
18 |
+
img_array = np.array(img)
|
19 |
|
20 |
+
prediction = model.predict(np.expand_dims(img_array, axis=0))
|
21 |
+
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
|
22 |
+
|
23 |
+
# Identify the most confident prediction
|
24 |
+
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
|
25 |
|
26 |
+
return img, confidences
|
27 |
|
28 |
+
# Define the Gradio interface
|
29 |
+
iface = gr.Interface(
|
30 |
+
fn=predict_pokemon_type, # Function to process the input
|
31 |
+
inputs=gr.File(label="Upload File"), # File upload widget
|
32 |
+
outputs=["image", "text"], # Output types for image and text
|
33 |
+
title="Pokemon Classifier", # Title of the interface
|
34 |
+
description="Upload a picture of a Pokemon (preferably Cubone, Ditto, Psyduck, Snorlax, or Weedle) to see its type and confidence level. The trained model has an accuracy of 96%!" # Description of the interface
|
35 |
+
)
|
36 |
|
37 |
+
# Launch the interface
|
38 |
+
iface.launch()
|