pdfGPT_Turbo / app.py
th8m0z
cleaned up code
c16c062
raw
history blame
5.44 kB
import urllib.request
import fitz
import re
import openai
import os
from semantic_search import SemanticSearch
recommender = SemanticSearch()
def download_pdf(url, output_path):
urllib.request.urlretrieve(url, output_path)
def preprocess(text):
text = text.replace('\n', ' ')
text = re.sub('\s+', ' ', text)
return text
# converts pdf to text
def pdf_to_text(path, start_page=1, end_page=None):
doc = fitz.open(path)
total_pages = doc.page_count
if end_page is None:
end_page = total_pages
text_list = []
for i in range(start_page-1, end_page):
text = doc.load_page(i).get_text("text")
text = preprocess(text)
text_list.append(text)
doc.close()
return text_list
# converts a text into a list of chunks
def text_to_chunks(texts, word_length=150, start_page=1, file_number=1):
filtered_texts = [''.join(char for char in text if ord(char) < 128) for text in texts]
text_toks = [t.split(' ') for t in filtered_texts]
chunks = []
for idx, words in enumerate(text_toks):
for i in range(0, len(words), word_length):
chunk = words[i:i+word_length]
if (i+word_length) > len(words) and (len(chunk) < word_length) and (
len(text_toks) != (idx+1)):
text_toks[idx+1] = chunk + text_toks[idx+1]
continue
chunk = ' '.join(chunk).strip()
chunk = f'[PDF no. {file_number}] [Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
chunks.append(chunk)
return chunks
# merges a list of pdfs into a list of chunks and fits the recommender
def load_recommender(paths, start_page=1):
global recommender
chunks = []
for idx, path in enumerate(paths):
chunks += text_to_chunks(pdf_to_text(path, start_page=start_page), start_page=start_page, file_number=idx+1)
recommender.fit(chunks)
return 'Corpus Loaded.'
# calls the OpenAI API to generate a response for the given query
def generate_text(openAI_key, prompt, model="gpt-3.5-turbo"):
openai.api_key = openAI_key
temperature=0.7
max_tokens=256
top_p=1
frequency_penalty=0
presence_penalty=0
if model == "text-davinci-003":
completions = openai.Completion.create(
engine=model,
prompt=prompt,
max_tokens=max_tokens,
n=1,
stop=None,
temperature=temperature,
)
message = completions.choices[0].text
else:
message = openai.ChatCompletion.create(
model=model,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "assistant", "content": "Here is some initial assistant message."},
{"role": "user", "content": prompt}
],
temperature=.3,
max_tokens=max_tokens,
top_p=top_p,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
).choices[0].message['content']
return message
# constructs the prompt for the given query
def construct_prompt(question):
topn_chunks = recommender(question)
prompt = 'search results:\n\n'
for c in topn_chunks:
prompt += c + '\n\n'
prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
"Cite each reference using [PDF Number][Page Number] notation. "\
"Only answer what is asked. The answer should be short and concise. \n\nQuery: "
prompt += f"{question}\nAnswer:"
return prompt
# main function that is called when the user clicks the submit button, generates an answer for the query
def question_answer(chat_history, url, files, question, openAI_key, model):
try:
if files == None:
files = []
if openAI_key.strip()=='':
return '[ERROR]: Please enter your Open AI Key. Get your key here : https://platform.openai.com/account/api-keys'
if url.strip() == '' and files == []:
return '[ERROR]: Both URL and PDF is empty. Provide at least one.'
if url.strip() != '' and files is not []:
return '[ERROR]: Both URL and PDF is provided. Please provide only one (either URL or PDF).'
if model is None or model =='':
return '[ERROR]: You have not selected any model. Please choose an LLM model.'
if url.strip() != '':
glob_url = url
download_pdf(glob_url, 'corpus.pdf')
load_recommender('corpus.pdf')
else:
print(files)
filenames = []
for file in files:
old_file_name = file.name
file_name = file.name
file_name = file_name[:-12] + file_name[-4:]
os.rename(old_file_name, file_name)
filenames.append(file_name)
load_recommender(filenames)
if question.strip() == '':
return '[ERROR]: Question field is empty'
prompt = construct_prompt(question)
answer = generate_text(openAI_key, prompt, model)
chat_history.append([question, answer])
return chat_history
except openai.error.InvalidRequestError as e:
return f'[ERROR]: Either you do not have access to GPT4 or you have exhausted your quota!'