qnguyen3 commited on
Commit
52da0b6
1 Parent(s): d833c89

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +132 -47
app.py CHANGED
@@ -1,62 +1,147 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
 
 
 
 
 
 
 
 
 
 
6
  """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- response = ""
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
 
62
  if __name__ == "__main__":
 
1
+ import torch
2
+ from PIL import Image
3
  import gradio as gr
4
+ import spaces
5
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
6
+ import os
7
+ from threading import Thread
8
 
9
+
10
+ HF_TOKEN = os.environ.get("HF_TOKEN", None)
11
+ MODEL_ID = "Qwen/Qwen2-7B-Instruct"
12
+ MODELS = os.environ.get("MODELS")
13
+ MODEL_NAME = MODELS.split("/")[-1]
14
+
15
+ TITLE = "<h1><center>Qwen2-Vietnamese</center></h1>"
16
+
17
+ DESCRIPTION = f"""
18
+ <h3>MODEL: <a href="https://hf.co/{MODELS}">{MODEL_NAME}</a></h3>
19
+ <center>
20
+ <p>Qwen2 is the large language model built by Alibaba Cloud.
21
+ <br>
22
+ Feel free to test without log.
23
+ </p>
24
+ </center>
25
  """
26
+
27
+ CSS = """
28
+ .duplicate-button {
29
+ margin: auto !important;
30
+ color: white !important;
31
+ background: black !important;
32
+ border-radius: 100vh !important;
33
+ }
34
+ h3 {
35
+ text-align: center;
36
+ }
37
  """
 
38
 
39
+ model = AutoModelForCausalLM.from_pretrained(
40
+ MODELS,
41
+ torch_dtype=torch.float16,
42
+ device_map="auto",
43
+ )
44
+ tokenizer = AutoTokenizer.from_pretrained(MODELS)
45
 
46
+ @spaces.GPU
47
+ def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
48
+ print(f'message is - {message}')
49
+ print(f'history is - {history}')
50
+ conversation = []
51
+ for prompt, answer in history:
52
+ conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
53
+ conversation.append({"role": "user", "content": message})
 
54
 
55
+ print(f"Conversation is -\n{conversation}")
56
+
57
+ input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
58
+ inputs = tokenizer(input_ids, return_tensors="pt").to(0)
59
+
60
+ streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
61
 
62
+ generate_kwargs = dict(
63
+ inputs,
64
+ streamer=streamer,
65
+ top_k=top_k,
66
+ top_p=top_p,
67
+ repetition_penalty=penalty,
68
+ max_new_tokens=max_new_tokens,
69
+ do_sample=True,
70
+ temperature=temperature,
71
+ eos_token_id = [151645, 151643],
72
+ )
73
+
74
+ thread = Thread(target=model.generate, kwargs=generate_kwargs)
75
+ thread.start()
76
 
77
+ buffer = ""
78
+ for new_text in streamer:
79
+ buffer += new_text
80
+ yield buffer
81
 
 
 
 
 
 
 
 
 
82
 
 
 
83
 
84
+ chatbot = gr.Chatbot(height=450)
85
+
86
+ with gr.Blocks(css=CSS) as demo:
87
+ gr.HTML(TITLE)
88
+ gr.HTML(DESCRIPTION)
89
+ gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
90
+ gr.ChatInterface(
91
+ fn=stream_chat,
92
+ chatbot=chatbot,
93
+ fill_height=True,
94
+ additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
95
+ additional_inputs=[
96
+ gr.Slider(
97
+ minimum=0,
98
+ maximum=1,
99
+ step=0.1,
100
+ value=0.8,
101
+ label="Temperature",
102
+ render=False,
103
+ ),
104
+ gr.Slider(
105
+ minimum=128,
106
+ maximum=4096,
107
+ step=1,
108
+ value=1024,
109
+ label="Max new tokens",
110
+ render=False,
111
+ ),
112
+ gr.Slider(
113
+ minimum=0.0,
114
+ maximum=1.0,
115
+ step=0.1,
116
+ value=0.8,
117
+ label="top_p",
118
+ render=False,
119
+ ),
120
+ gr.Slider(
121
+ minimum=1,
122
+ maximum=20,
123
+ step=1,
124
+ value=20,
125
+ label="top_k",
126
+ render=False,
127
+ ),
128
+ gr.Slider(
129
+ minimum=0.0,
130
+ maximum=2.0,
131
+ step=0.1,
132
+ value=1.0,
133
+ label="Repetition penalty",
134
+ render=False,
135
+ ),
136
+ ],
137
+ examples=[
138
+ ["Viết một lá thư chúc mừng sinh nhật gửi bạn Thục Linh."],
139
+ ["Trường Sa và Hoàng Sa là của nước nào?"],
140
+ ["Giới thiệu về tỉ phú Elon Musk"],
141
+ ["Viết code một trang cá nhân đơn giản bằng html."],
142
+ ],
143
+ cache_examples=False,
144
+ )
145
 
146
 
147
  if __name__ == "__main__":