Spaces:
Sleeping
Sleeping
| import torch | |
| import spaces | |
| from diffusers import StableDiffusionPipeline | |
| import gradio as gr | |
| repo = "IDKiro/sdxs-512-0.9" | |
| seed = 42 | |
| weight_type = torch.float16 | |
| zero = torch.Tensor([0]).cuda() | |
| print(zero.device) # <-- 'cpu' 🤔 | |
| # Load model. | |
| pipe = StableDiffusionPipeline.from_pretrained(repo, torch_dtype=weight_type) | |
| generator = pipe | |
| # move to GPU if available | |
| if torch.cuda.is_available(): | |
| generator = generator.to("cuda") | |
| def generate(prompts): | |
| images = generator(list(prompts)).images | |
| return [images] | |
| demo = gr.Interface( | |
| generate, | |
| "textbox", | |
| "image", | |
| title="SDXS: Real-Time One-Step Latent Diffusion Models with Image Conditions", | |
| description="This demo showcases [SDXS](https://arxiv.org/abs/2403.16627)", | |
| batch=True, | |
| max_batch_size=4, # Set the batch size based on your CPU/GPU memory | |
| ).queue() | |
| if __name__ == "__main__": | |
| demo.launch() | |