Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import requests
|
5 |
+
from PIL import Image
|
6 |
+
from torchvision import transforms
|
7 |
+
|
8 |
+
model = torch.hub.load('pytorch/vision', 'resnet18', pretrained=True).eval()
|
9 |
+
|
10 |
+
# Download human-readable labels for ImageNet.
|
11 |
+
response = requests.get("https://git.io/JJkYN")
|
12 |
+
labels = response.text.split("\n")
|
13 |
+
|
14 |
+
def predict(inp):
|
15 |
+
inp = transforms.ToTensor()(inp).unsqueeze(0)
|
16 |
+
with torch.no_grad():
|
17 |
+
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
18 |
+
confidences = {labels[i]: float(prediction[i]) for i in range(999)}
|
19 |
+
return confidences
|
20 |
+
|
21 |
+
# create gradio interface, with text input and dict output
|
22 |
+
gr.Interface(title="Image Classification in PyTorch",
|
23 |
+
fn=predict,
|
24 |
+
inputs=gr.Image(type="pil"),
|
25 |
+
outputs=gr.Label(num_top_classes=3),
|
26 |
+
examples=["lion.jpg", "cheetah.jpg"]).launch()
|
27 |
+
|
28 |
+
# run the app
|
29 |
+
gr.launch(server_port=7680, enable_queue=False, share=True)
|