Spaces:
Runtime error
Runtime error
kennymckormick
commited on
Commit
·
63ffee3
1
Parent(s):
0c31bc1
add 'Rank'
Browse files
app.py
CHANGED
|
@@ -25,14 +25,18 @@ with gr.Blocks() as demo:
|
|
| 25 |
_, check_box = BUILD_L1_DF(results, MAIN_FIELDS)
|
| 26 |
table = generate_table(results, DEFAULT_BENCH)
|
| 27 |
table['Rank'] = list(range(1, len(table) + 1))
|
|
|
|
| 28 |
type_map = check_box['type_map']
|
|
|
|
|
|
|
| 29 |
checkbox_group = gr.CheckboxGroup(
|
| 30 |
choices=check_box['all'],
|
| 31 |
value=check_box['required'],
|
| 32 |
label='Evaluation Dimension',
|
| 33 |
interactive=True,
|
| 34 |
)
|
| 35 |
-
|
|
|
|
| 36 |
with gr.Row():
|
| 37 |
model_size = gr.CheckboxGroup(
|
| 38 |
choices=MODEL_SIZE,
|
|
@@ -55,7 +59,8 @@ with gr.Blocks() as demo:
|
|
| 55 |
|
| 56 |
def filter_df(fields, model_size, model_type):
|
| 57 |
filter_list = ['Avg Score', 'Avg Rank', 'OpenSource', 'Verified']
|
| 58 |
-
headers = check_box['essential'] + fields
|
|
|
|
| 59 |
new_fields = [field for field in fields if field not in filter_list]
|
| 60 |
df = generate_table(results, new_fields)
|
| 61 |
|
|
@@ -90,13 +95,17 @@ with gr.Blocks() as demo:
|
|
| 90 |
s = structs[i]
|
| 91 |
s.table, s.check_box = BUILD_L2_DF(results, dataset)
|
| 92 |
s.type_map = s.check_box['type_map']
|
|
|
|
|
|
|
| 93 |
s.checkbox_group = gr.CheckboxGroup(
|
| 94 |
choices=s.check_box['all'],
|
| 95 |
value=s.check_box['required'],
|
| 96 |
label=f'{dataset} CheckBoxes',
|
| 97 |
interactive=True,
|
| 98 |
)
|
| 99 |
-
s.headers = s.check_box['essential'] + s.checkbox_group.
|
|
|
|
|
|
|
| 100 |
with gr.Row():
|
| 101 |
s.model_size = gr.CheckboxGroup(
|
| 102 |
choices=MODEL_SIZE,
|
|
@@ -120,7 +129,7 @@ with gr.Blocks() as demo:
|
|
| 120 |
|
| 121 |
def filter_df_l2(dataset_name, fields, model_size, model_type):
|
| 122 |
s = structs[DATASETS.index(dataset_name)]
|
| 123 |
-
headers = s.check_box['essential'] + fields
|
| 124 |
df = cp.deepcopy(s.table)
|
| 125 |
df['flag'] = [model_size_flag(x, model_size) for x in df['Param (B)']]
|
| 126 |
df = df[df['flag']]
|
|
@@ -129,6 +138,7 @@ with gr.Blocks() as demo:
|
|
| 129 |
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
|
| 130 |
df = df[df['flag']]
|
| 131 |
df.pop('flag')
|
|
|
|
| 132 |
|
| 133 |
comp = gr.components.DataFrame(
|
| 134 |
value=df[headers],
|
|
|
|
| 25 |
_, check_box = BUILD_L1_DF(results, MAIN_FIELDS)
|
| 26 |
table = generate_table(results, DEFAULT_BENCH)
|
| 27 |
table['Rank'] = list(range(1, len(table) + 1))
|
| 28 |
+
|
| 29 |
type_map = check_box['type_map']
|
| 30 |
+
type_map['Rank'] = 'number'
|
| 31 |
+
|
| 32 |
checkbox_group = gr.CheckboxGroup(
|
| 33 |
choices=check_box['all'],
|
| 34 |
value=check_box['required'],
|
| 35 |
label='Evaluation Dimension',
|
| 36 |
interactive=True,
|
| 37 |
)
|
| 38 |
+
|
| 39 |
+
headers = ['Rank'] + check_box['essential'] + checkbox_group.value
|
| 40 |
with gr.Row():
|
| 41 |
model_size = gr.CheckboxGroup(
|
| 42 |
choices=MODEL_SIZE,
|
|
|
|
| 59 |
|
| 60 |
def filter_df(fields, model_size, model_type):
|
| 61 |
filter_list = ['Avg Score', 'Avg Rank', 'OpenSource', 'Verified']
|
| 62 |
+
headers = ['Rank'] + check_box['essential'] + fields
|
| 63 |
+
|
| 64 |
new_fields = [field for field in fields if field not in filter_list]
|
| 65 |
df = generate_table(results, new_fields)
|
| 66 |
|
|
|
|
| 95 |
s = structs[i]
|
| 96 |
s.table, s.check_box = BUILD_L2_DF(results, dataset)
|
| 97 |
s.type_map = s.check_box['type_map']
|
| 98 |
+
s.type_map['Rank'] = 'number'
|
| 99 |
+
|
| 100 |
s.checkbox_group = gr.CheckboxGroup(
|
| 101 |
choices=s.check_box['all'],
|
| 102 |
value=s.check_box['required'],
|
| 103 |
label=f'{dataset} CheckBoxes',
|
| 104 |
interactive=True,
|
| 105 |
)
|
| 106 |
+
s.headers = ['Rank'] + s.check_box['essential'] + s.checkbox_group.values
|
| 107 |
+
s.table['Rank'] = list(range(1, len(s.table) + 1))
|
| 108 |
+
|
| 109 |
with gr.Row():
|
| 110 |
s.model_size = gr.CheckboxGroup(
|
| 111 |
choices=MODEL_SIZE,
|
|
|
|
| 129 |
|
| 130 |
def filter_df_l2(dataset_name, fields, model_size, model_type):
|
| 131 |
s = structs[DATASETS.index(dataset_name)]
|
| 132 |
+
headers = ['Rank'] + s.check_box['essential'] + fields
|
| 133 |
df = cp.deepcopy(s.table)
|
| 134 |
df['flag'] = [model_size_flag(x, model_size) for x in df['Param (B)']]
|
| 135 |
df = df[df['flag']]
|
|
|
|
| 138 |
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
|
| 139 |
df = df[df['flag']]
|
| 140 |
df.pop('flag')
|
| 141 |
+
df['Rank'] = list(range(1, len(df) + 1))
|
| 142 |
|
| 143 |
comp = gr.components.DataFrame(
|
| 144 |
value=df[headers],
|