thinkwee
commited on
Commit
·
9337e18
1
Parent(s):
e12cf59
feat: Add new Qwen and Gemini model data, implement entropy data processing, and introduce various visualization and data management scripts.
Browse files- .gitignore +3 -0
- charts.js +777 -248
- data.js +0 -0
- index.html +79 -12
- styles.css +178 -181
.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
probing/
|
| 2 |
+
# reference_scripts/
|
| 3 |
+
novelty_check/
|
charts.js
CHANGED
|
@@ -2,73 +2,148 @@
|
|
| 2 |
// Using Plotly.js with animate for smooth transitions
|
| 3 |
|
| 4 |
// Common Plotly layout settings for dark theme
|
|
|
|
| 5 |
const darkLayout = {
|
| 6 |
-
paper_bgcolor: 'rgba(
|
| 7 |
-
plot_bgcolor: 'rgba(
|
| 8 |
font: {
|
| 9 |
-
family: '
|
| 10 |
-
color: '#
|
| 11 |
-
size:
|
| 12 |
},
|
| 13 |
xaxis: {
|
| 14 |
-
gridcolor: '
|
| 15 |
-
linecolor: '
|
| 16 |
-
tickfont: { color: '#
|
| 17 |
-
title: { font: { color: '#
|
|
|
|
| 18 |
},
|
| 19 |
yaxis: {
|
| 20 |
-
gridcolor: '
|
| 21 |
-
linecolor: '
|
| 22 |
-
tickfont: { color: '#
|
| 23 |
-
title: { font: { color: '#
|
|
|
|
| 24 |
},
|
| 25 |
legend: {
|
| 26 |
-
bgcolor: 'rgba(
|
| 27 |
-
bordercolor: 'rgba(
|
| 28 |
-
borderwidth:
|
| 29 |
-
font: { color: '#
|
| 30 |
orientation: 'h',
|
| 31 |
-
y:
|
| 32 |
x: 0.5,
|
| 33 |
-
xanchor: 'center'
|
|
|
|
| 34 |
},
|
| 35 |
hoverlabel: {
|
| 36 |
-
bgcolor: '#
|
| 37 |
-
bordercolor: '
|
| 38 |
-
font: { color: '#
|
|
|
|
| 39 |
},
|
| 40 |
-
|
|
|
|
| 41 |
};
|
| 42 |
|
| 43 |
const plotlyConfig = {
|
| 44 |
-
displayModeBar:
|
| 45 |
responsive: true,
|
| 46 |
-
modeBarButtonsToRemove: ['lasso2d', 'select2d', 'autoScale2d'],
|
| 47 |
displaylogo: false
|
| 48 |
};
|
| 49 |
|
| 50 |
// Animation settings for smooth transitions
|
| 51 |
const animationSettings = {
|
| 52 |
transition: {
|
| 53 |
-
duration:
|
| 54 |
easing: 'cubic-in-out'
|
| 55 |
},
|
| 56 |
frame: {
|
| 57 |
-
duration:
|
|
|
|
| 58 |
}
|
| 59 |
};
|
| 60 |
|
| 61 |
// Current state
|
| 62 |
let currentScalingDim = 'turn';
|
| 63 |
-
let currentProbingMode = '
|
|
|
|
| 64 |
|
| 65 |
// ============================================================================
|
| 66 |
-
//
|
| 67 |
// ============================================================================
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
// ============================================================================
|
| 71 |
-
// SCALING ANALYSIS -
|
| 72 |
// ============================================================================
|
| 73 |
|
| 74 |
// Helper to normalize values to [0, 1]
|
|
@@ -135,7 +210,28 @@ const SCALING_Y_RANGES = {
|
|
| 135 |
'globem': [0, 50] // Python: y_min=0, y_max=50
|
| 136 |
};
|
| 137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
function initScalingCharts() {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
const scenarios = ['mimic', '10k', 'globem'];
|
| 140 |
|
| 141 |
scenarios.forEach(scenario => {
|
|
@@ -161,7 +257,7 @@ function initScalingCharts() {
|
|
| 161 |
x: modelNormX,
|
| 162 |
y: data[model].accuracy,
|
| 163 |
mode: 'lines+markers',
|
| 164 |
-
name: model,
|
| 165 |
line: { color: DDR_DATA.modelColors[model] || '#888', width: 2 },
|
| 166 |
marker: { size: 6, color: DDR_DATA.modelColors[model] || '#888' },
|
| 167 |
hovertemplate: `<b>${model}</b><br>Turn: %{customdata}<br>Accuracy: %{y:.2f}%<extra></extra>`,
|
|
@@ -175,7 +271,7 @@ function initScalingCharts() {
|
|
| 175 |
...darkLayout,
|
| 176 |
xaxis: {
|
| 177 |
...darkLayout.xaxis,
|
| 178 |
-
title: { text: 'Number of Interaction Turns', font: { size: 11, color: '#
|
| 179 |
type: 'linear', // ALWAYS LINEAR
|
| 180 |
range: [-0.05, 1.05], // FIXED RANGE
|
| 181 |
tickmode: 'array',
|
|
@@ -185,26 +281,26 @@ function initScalingCharts() {
|
|
| 185 |
},
|
| 186 |
yaxis: {
|
| 187 |
...darkLayout.yaxis,
|
| 188 |
-
title: { text: 'Accuracy (%)', font: { size: 11, color: '#
|
| 189 |
dtick: 5,
|
| 190 |
range: yRange
|
| 191 |
},
|
| 192 |
-
showlegend:
|
| 193 |
};
|
| 194 |
|
| 195 |
Plotly.newPlot(`scaling-${scenario}`, traces, layout, plotlyConfig);
|
| 196 |
});
|
| 197 |
-
}
|
| 198 |
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
transition: stroke-dashoffset 1s ease-out;
|
| 205 |
}
|
| 206 |
-
|
| 207 |
-
|
|
|
|
|
|
|
| 208 |
|
| 209 |
function updateScalingCharts(dimension) {
|
| 210 |
const scenarios = ['mimic', '10k', 'globem'];
|
|
@@ -240,7 +336,6 @@ function updateScalingCharts(dimension) {
|
|
| 240 |
let offset = 0;
|
| 241 |
|
| 242 |
const hoverLabels = { 'turn': 'Turns', 'token': 'Tokens', 'cost': 'Cost' };
|
| 243 |
-
const hoverFormat = dimension === 'token' ? (v) => v.toLocaleString() : (dimension === 'cost' ? (v) => '$' + v.toFixed(4) : (v) => v);
|
| 244 |
|
| 245 |
models.forEach((model, i) => {
|
| 246 |
const len = data[model].turns.length;
|
|
@@ -259,13 +354,13 @@ function updateScalingCharts(dimension) {
|
|
| 259 |
x: modelNormX,
|
| 260 |
y: data[model].accuracy,
|
| 261 |
customdata: rawValues,
|
| 262 |
-
|
|
|
|
| 263 |
hovertemplate: `<b>${model}</b><br>${hoverLabels[dimension]}: %{customdata}<br>Accuracy: %{y:.2f}%<extra></extra>`
|
| 264 |
});
|
| 265 |
});
|
| 266 |
|
| 267 |
-
//
|
| 268 |
-
|
| 269 |
const graphDiv = document.getElementById(`scaling-${scenario}`);
|
| 270 |
|
| 271 |
// Phase 1: Update to markers-only mode and animate points
|
|
@@ -295,48 +390,55 @@ function updateScalingCharts(dimension) {
|
|
| 295 |
redraw: true
|
| 296 |
}
|
| 297 |
}).then(() => {
|
| 298 |
-
// Phase 2: Add lines back
|
|
|
|
| 299 |
const linesAndMarkersTraces = newTraces.map(trace => ({
|
| 300 |
...trace,
|
| 301 |
-
mode: 'lines+markers'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
}));
|
| 303 |
|
| 304 |
-
//
|
| 305 |
Plotly.react(`scaling-${scenario}`, linesAndMarkersTraces, {
|
| 306 |
...graphDiv.layout
|
| 307 |
}, plotlyConfig).then(() => {
|
| 308 |
-
//
|
| 309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
requestAnimationFrame(() => {
|
| 311 |
-
|
| 312 |
-
let paths = graphDiv.querySelectorAll('.scatterlayer .js-line path');
|
| 313 |
-
if (paths.length === 0) {
|
| 314 |
-
paths = graphDiv.querySelectorAll('.js-line path');
|
| 315 |
-
}
|
| 316 |
-
if (paths.length === 0) {
|
| 317 |
-
paths = graphDiv.querySelectorAll('path.js-line');
|
| 318 |
-
}
|
| 319 |
-
if (paths.length === 0) {
|
| 320 |
-
paths = graphDiv.querySelectorAll('.scatter path');
|
| 321 |
-
}
|
| 322 |
-
|
| 323 |
-
paths.forEach((path, idx) => {
|
| 324 |
const len = path.getTotalLength();
|
| 325 |
-
|
| 326 |
if (len > 0) {
|
| 327 |
-
|
| 328 |
-
path.style.
|
| 329 |
-
path.style.strokeDasharray = len + ' ' + len;
|
| 330 |
-
path.style.strokeDashoffset = len;
|
| 331 |
-
|
| 332 |
-
// Force reflow
|
| 333 |
-
path.getBoundingClientRect();
|
| 334 |
-
|
| 335 |
-
// Start animation after a tiny delay
|
| 336 |
-
setTimeout(() => {
|
| 337 |
-
path.style.transition = 'stroke-dashoffset 0.8s ease-out';
|
| 338 |
-
path.style.strokeDashoffset = '0';
|
| 339 |
-
}, 10);
|
| 340 |
}
|
| 341 |
});
|
| 342 |
});
|
|
@@ -346,18 +448,19 @@ function updateScalingCharts(dimension) {
|
|
| 346 |
});
|
| 347 |
}
|
| 348 |
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
|
|
|
| 361 |
});
|
| 362 |
});
|
| 363 |
|
|
@@ -397,8 +500,6 @@ function getDisplayName(model) {
|
|
| 397 |
return RANKING_DISPLAY_NAMES[model] || model;
|
| 398 |
}
|
| 399 |
|
| 400 |
-
let currentRankingMode = 'novelty';
|
| 401 |
-
|
| 402 |
function renderRankingCharts(mode, animate = false) {
|
| 403 |
const scenarios = [
|
| 404 |
{ key: 'MIMIC', id: 'mimic' },
|
|
@@ -410,69 +511,116 @@ function renderRankingCharts(mode, animate = false) {
|
|
| 410 |
const rawData = DDR_DATA.ranking[key];
|
| 411 |
if (!rawData) return;
|
| 412 |
|
| 413 |
-
//
|
| 414 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 415 |
if (mode === 'novelty') {
|
| 416 |
-
|
|
|
|
| 417 |
} else {
|
| 418 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 419 |
}
|
| 420 |
|
| 421 |
-
|
| 422 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 423 |
const traces = [];
|
| 424 |
|
| 425 |
-
// Connection
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
line: {
|
| 432 |
-
color: 'rgba(148, 163, 184, 0.4)',
|
| 433 |
-
width: 1.5,
|
| 434 |
-
dash: 'dash'
|
| 435 |
-
},
|
| 436 |
-
showlegend: false,
|
| 437 |
-
hoverinfo: 'skip'
|
| 438 |
-
});
|
| 439 |
});
|
| 440 |
|
| 441 |
-
// Novelty rank points (filled circles)
|
| 442 |
traces.push({
|
| 443 |
-
x:
|
| 444 |
-
y:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 445 |
mode: 'markers',
|
| 446 |
name: 'Novelty Rank',
|
| 447 |
marker: {
|
| 448 |
size: mode === 'novelty' ? 12 : 10,
|
| 449 |
symbol: 'circle',
|
| 450 |
-
color:
|
| 451 |
line: { color: '#fff', width: 1.5 }
|
| 452 |
},
|
| 453 |
-
text:
|
| 454 |
hovertemplate: '%{text}<extra></extra>'
|
| 455 |
});
|
| 456 |
|
| 457 |
-
//
|
| 458 |
traces.push({
|
| 459 |
-
x:
|
| 460 |
-
y:
|
| 461 |
mode: 'markers',
|
| 462 |
name: 'Accuracy Rank',
|
| 463 |
marker: {
|
| 464 |
size: mode === 'accuracy' ? 12 : 10,
|
| 465 |
symbol: 'diamond-open',
|
| 466 |
-
color:
|
| 467 |
line: { width: 2 }
|
| 468 |
},
|
| 469 |
-
text:
|
| 470 |
hovertemplate: '%{text}<extra></extra>'
|
| 471 |
});
|
| 472 |
|
| 473 |
-
//
|
| 474 |
-
|
| 475 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 476 |
const n = btRanks.length;
|
| 477 |
const meanBt = btRanks.reduce((a, b) => a + b, 0) / n;
|
| 478 |
const meanAcc = accRanks.reduce((a, b) => a + b, 0) / n;
|
|
@@ -490,19 +638,18 @@ function renderRankingCharts(mode, animate = false) {
|
|
| 490 |
...darkLayout,
|
| 491 |
xaxis: {
|
| 492 |
...darkLayout.xaxis,
|
| 493 |
-
title: { text: 'Rank', font: { size: 10, color: '#
|
| 494 |
-
range: [topN +
|
| 495 |
-
|
| 496 |
-
|
|
|
|
| 497 |
},
|
| 498 |
yaxis: {
|
| 499 |
...darkLayout.yaxis,
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
automargin: true,
|
| 505 |
-
range: [-0.5, models.length - 0.5]
|
| 506 |
},
|
| 507 |
showlegend: false,
|
| 508 |
annotations: [
|
|
@@ -513,8 +660,8 @@ function renderRankingCharts(mode, animate = false) {
|
|
| 513 |
yref: 'paper',
|
| 514 |
text: `ρ = ${rho.toFixed(2)}`,
|
| 515 |
showarrow: false,
|
| 516 |
-
font: { size: 11, color: '#
|
| 517 |
-
bgcolor: 'rgba(
|
| 518 |
borderpad: 4
|
| 519 |
},
|
| 520 |
{
|
|
@@ -524,16 +671,21 @@ function renderRankingCharts(mode, animate = false) {
|
|
| 524 |
yref: 'paper',
|
| 525 |
text: sortLabel,
|
| 526 |
showarrow: false,
|
| 527 |
-
font: { size: 10, color: mode === 'novelty' ? PROPRIETARY_COLOR : OPENSOURCE_COLOR, family: '
|
| 528 |
-
bgcolor: 'rgba(
|
| 529 |
borderpad: 4
|
| 530 |
}
|
| 531 |
],
|
| 532 |
-
|
|
|
|
|
|
|
| 533 |
};
|
| 534 |
|
| 535 |
if (animate) {
|
| 536 |
-
Plotly.
|
|
|
|
|
|
|
|
|
|
| 537 |
} else {
|
| 538 |
Plotly.newPlot(`ranking-${id}`, traces, layout, plotlyConfig);
|
| 539 |
}
|
|
@@ -541,27 +693,35 @@ function renderRankingCharts(mode, animate = false) {
|
|
| 541 |
}
|
| 542 |
|
| 543 |
function initRankingCharts() {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 544 |
renderRankingCharts('novelty', false);
|
| 545 |
}
|
| 546 |
|
| 547 |
// Ranking mode toggle event listener
|
| 548 |
-
document.
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 558 |
});
|
| 559 |
});
|
| 560 |
|
| 561 |
// ============================================================================
|
| 562 |
// TURN DISTRIBUTION - 3 Charts (Ridgeline style)
|
| 563 |
// ============================================================================
|
| 564 |
-
// Turn distribution display name mapping
|
| 565 |
const TURN_DISPLAY_NAMES = {
|
| 566 |
'run_api_deepseek_deepseek-chat': 'DeepSeek-V3.2',
|
| 567 |
'qwen3-next-80b-a3b-instruct': 'Qwen3-Next-80BA3B',
|
|
@@ -598,17 +758,23 @@ function getTurnDisplayName(model) {
|
|
| 598 |
}
|
| 599 |
|
| 600 |
function initTurnCharts() {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 601 |
const scenarios = ['mimic', '10k', 'globem'];
|
| 602 |
|
| 603 |
-
// Family colors
|
| 604 |
const familyColors = {
|
| 605 |
-
'claude': '#
|
| 606 |
-
'gpt': '#
|
| 607 |
-
'gemini': '#
|
| 608 |
-
'deepseek': '#
|
| 609 |
-
'glm': '#
|
| 610 |
-
'kimi': '#
|
| 611 |
-
'minimax': '#
|
| 612 |
'qwen': '#0EA5E9',
|
| 613 |
'llama': '#F59E0B'
|
| 614 |
};
|
|
@@ -618,56 +784,65 @@ function initTurnCharts() {
|
|
| 618 |
for (const [family, color] of Object.entries(familyColors)) {
|
| 619 |
if (lower.includes(family)) return color;
|
| 620 |
}
|
| 621 |
-
return '#
|
| 622 |
}
|
| 623 |
|
| 624 |
scenarios.forEach(scenario => {
|
| 625 |
const data = DDR_DATA.turn[scenario];
|
| 626 |
if (!data) return;
|
| 627 |
|
| 628 |
-
// Sort by median descending
|
| 629 |
const sortedData = [...data].sort((a, b) => b.median - a.median);
|
| 630 |
|
| 631 |
-
// Limit to top 15 models
|
| 632 |
-
const displayData = sortedData.slice(0, 15);
|
| 633 |
|
| 634 |
const traces = [];
|
| 635 |
-
const binLabels = ['0-10', '10-20', '20-30', '30-40', '40-50', '50-60', '60-70', '70-80', '80-90', '90-100'];
|
| 636 |
const binCenters = [5, 15, 25, 35, 45, 55, 65, 75, 85, 95];
|
| 637 |
|
| 638 |
-
// Create ridgeline traces (area charts stacked vertically)
|
| 639 |
displayData.forEach((model, idx) => {
|
| 640 |
const color = getModelColor(model.model);
|
| 641 |
const yOffset = idx;
|
| 642 |
const displayName = getTurnDisplayName(model.model);
|
| 643 |
-
|
| 644 |
-
// Scale distribution to fit in the row (max height ~0.8)
|
| 645 |
const maxDist = Math.max(...model.distribution) || 1;
|
| 646 |
-
const scaledDist = model.distribution.map(d => d / maxDist * 0.7);
|
| 647 |
|
| 648 |
-
//
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 649 |
traces.push({
|
| 650 |
-
x:
|
| 651 |
-
y:
|
| 652 |
mode: 'lines',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 653 |
fill: 'toself',
|
| 654 |
-
fillcolor: color + '
|
| 655 |
-
line: { color: color, width: 1.5 },
|
| 656 |
name: displayName,
|
| 657 |
-
|
| 658 |
-
`${displayName}<br>${binLabels[i]} turns: ${d.toFixed(1)}%<br>Median: ${model.median}`
|
| 659 |
-
),
|
| 660 |
-
hovertemplate: '%{text}<extra></extra>',
|
| 661 |
-
showlegend: false
|
| 662 |
-
});
|
| 663 |
-
|
| 664 |
-
// Add baseline
|
| 665 |
-
traces.push({
|
| 666 |
-
x: [0, 100],
|
| 667 |
-
y: [yOffset, yOffset],
|
| 668 |
-
mode: 'lines',
|
| 669 |
-
line: { color: 'rgba(148, 163, 184, 0.2)', width: 0.5 },
|
| 670 |
-
hoverinfo: 'skip',
|
| 671 |
showlegend: false
|
| 672 |
});
|
| 673 |
});
|
|
@@ -676,17 +851,19 @@ function initTurnCharts() {
|
|
| 676 |
...darkLayout,
|
| 677 |
xaxis: {
|
| 678 |
...darkLayout.xaxis,
|
| 679 |
-
title: { text: 'Number of Turns', font: { size:
|
| 680 |
range: [0, 100],
|
| 681 |
dtick: 20
|
| 682 |
},
|
| 683 |
yaxis: {
|
| 684 |
...darkLayout.yaxis,
|
| 685 |
tickmode: 'array',
|
| 686 |
-
tickvals: displayData.map((_, i) => i),
|
| 687 |
ticktext: displayData.map(m => getTurnDisplayName(m.model)),
|
| 688 |
automargin: true,
|
| 689 |
-
range: [-0.5, displayData.length]
|
|
|
|
|
|
|
| 690 |
},
|
| 691 |
margin: { ...darkLayout.margin, l: 140 },
|
| 692 |
showlegend: false
|
|
@@ -700,7 +877,12 @@ function initTurnCharts() {
|
|
| 700 |
// PROBING RESULTS - 3 Charts with animated mode switching
|
| 701 |
// ============================================================================
|
| 702 |
function initProbingCharts() {
|
| 703 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 704 |
}
|
| 705 |
|
| 706 |
function renderProbingCharts(mode) {
|
|
@@ -708,31 +890,31 @@ function renderProbingCharts(mode) {
|
|
| 708 |
const scenarioIds = { 'mimic': 'mimic', 'globem': 'globem', '10k': '10k' };
|
| 709 |
|
| 710 |
scenarios.forEach(scenario => {
|
| 711 |
-
const
|
|
|
|
| 712 |
if (!data) return;
|
| 713 |
|
| 714 |
const traces = [];
|
| 715 |
-
const
|
|
|
|
|
|
|
| 716 |
|
| 717 |
models.forEach(model => {
|
| 718 |
const modelData = data[model];
|
| 719 |
const xKey = mode === 'byTurn' ? 'turns' : 'progress';
|
| 720 |
const xLabel = mode === 'byTurn' ? 'Turn' : 'Progress (%)';
|
| 721 |
|
| 722 |
-
// Main line
|
| 723 |
traces.push({
|
| 724 |
x: modelData[xKey],
|
| 725 |
y: modelData.logprob,
|
| 726 |
-
mode: 'lines+markers',
|
| 727 |
name: model,
|
| 728 |
line: {
|
| 729 |
-
color: DDR_DATA.
|
| 730 |
width: 2
|
| 731 |
},
|
| 732 |
-
marker: {
|
| 733 |
-
size: 4,
|
| 734 |
-
color: DDR_DATA.probingColors[model] || '#888'
|
| 735 |
-
},
|
| 736 |
hovertemplate: `<b>${model}</b><br>${xLabel}: %{x}<br>Log Prob: %{y:.2f}<extra></extra>`
|
| 737 |
});
|
| 738 |
|
|
@@ -745,7 +927,7 @@ function renderProbingCharts(mode) {
|
|
| 745 |
x: [...modelData[xKey], ...modelData[xKey].slice().reverse()],
|
| 746 |
y: [...upper, ...lower.slice().reverse()],
|
| 747 |
fill: 'toself',
|
| 748 |
-
fillcolor: (DDR_DATA.
|
| 749 |
line: { width: 0 },
|
| 750 |
showlegend: false,
|
| 751 |
hoverinfo: 'skip'
|
|
@@ -753,50 +935,70 @@ function renderProbingCharts(mode) {
|
|
| 753 |
}
|
| 754 |
});
|
| 755 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 756 |
const layout = {
|
| 757 |
...darkLayout,
|
| 758 |
xaxis: {
|
| 759 |
...darkLayout.xaxis,
|
| 760 |
-
|
| 761 |
},
|
| 762 |
yaxis: {
|
| 763 |
...darkLayout.yaxis,
|
| 764 |
-
title: { text: 'Avg Log Probability', font: { size: 11, color: '#
|
| 765 |
},
|
| 766 |
-
showlegend:
|
| 767 |
};
|
| 768 |
|
| 769 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 770 |
});
|
| 771 |
-
}
|
| 772 |
|
| 773 |
-
//
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
|
|
|
|
|
|
| 778 |
|
| 779 |
-
|
| 780 |
-
|
|
|
|
| 781 |
|
| 782 |
-
// Add updating class for visual feedback
|
| 783 |
-
['mimic', 'globem', '10k'].forEach(s => {
|
| 784 |
-
document.getElementById(`probing-${s}`).classList.add('chart-updating');
|
| 785 |
-
});
|
| 786 |
|
| 787 |
-
setTimeout(() => {
|
| 788 |
-
renderProbingCharts(mode);
|
| 789 |
-
['mimic', 'globem', '10k'].forEach(s => {
|
| 790 |
-
document.getElementById(`probing-${s}`).classList.remove('chart-updating');
|
| 791 |
-
});
|
| 792 |
-
}, 150);
|
| 793 |
-
});
|
| 794 |
-
});
|
| 795 |
|
| 796 |
// ============================================================================
|
| 797 |
// ERROR ANALYSIS - Hierarchical Bar Chart
|
| 798 |
// ============================================================================
|
| 799 |
function initErrorChart() {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 800 |
const data = DDR_DATA.error;
|
| 801 |
if (!data || data.length === 0) return;
|
| 802 |
|
|
@@ -820,7 +1022,7 @@ function initErrorChart() {
|
|
| 820 |
},
|
| 821 |
text: data.map(d => `${d.percentage}%`),
|
| 822 |
textposition: 'outside',
|
| 823 |
-
textfont: { size: 11, color: '#
|
| 824 |
hovertemplate: '<b>%{x}</b><br>%{y:.1f}%<br>Count: %{customdata}<extra></extra>',
|
| 825 |
customdata: data.map(d => d.count),
|
| 826 |
showlegend: false
|
|
@@ -837,7 +1039,7 @@ function initErrorChart() {
|
|
| 837 |
y: maxPct * 1.15,
|
| 838 |
text: `<b>${catName}</b>`,
|
| 839 |
showarrow: false,
|
| 840 |
-
font: { size: 10, color: '#
|
| 841 |
xanchor: 'center',
|
| 842 |
yanchor: 'bottom'
|
| 843 |
});
|
|
@@ -848,11 +1050,11 @@ function initErrorChart() {
|
|
| 848 |
xaxis: {
|
| 849 |
...darkLayout.xaxis,
|
| 850 |
tickangle: -30,
|
| 851 |
-
tickfont: { size: 10, color: '#
|
| 852 |
},
|
| 853 |
yaxis: {
|
| 854 |
...darkLayout.yaxis,
|
| 855 |
-
title: { text: 'Percentage (%)', font: { size: 11, color: '#
|
| 856 |
range: [0, maxPct * 1.25]
|
| 857 |
},
|
| 858 |
annotations: annotations,
|
|
@@ -863,29 +1065,356 @@ function initErrorChart() {
|
|
| 863 |
}
|
| 864 |
|
| 865 |
// ============================================================================
|
| 866 |
-
//
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 867 |
// ============================================================================
|
| 868 |
document.addEventListener('DOMContentLoaded', () => {
|
| 869 |
-
|
| 870 |
-
|
| 871 |
-
|
| 872 |
-
|
| 873 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 874 |
});
|
| 875 |
|
| 876 |
-
// Handle window resize
|
| 877 |
let resizeTimeout;
|
| 878 |
-
|
| 879 |
-
|
| 880 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 881 |
['mimic', '10k', 'globem'].forEach(s => {
|
| 882 |
-
|
| 883 |
-
Plotly.Plots.resize(
|
| 884 |
-
Plotly.Plots.resize(`turn-${s}`);
|
| 885 |
-
Plotly.Plots.resize(`probing-${s}`);
|
| 886 |
});
|
| 887 |
-
|
| 888 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 889 |
}
|
| 890 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 891 |
});
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
// Using Plotly.js with animate for smooth transitions
|
| 3 |
|
| 4 |
// Common Plotly layout settings for dark theme
|
| 5 |
+
// Common Plotly layout settings for Apple Minimalist theme
|
| 6 |
const darkLayout = {
|
| 7 |
+
paper_bgcolor: 'rgba(0,0,0,0)',
|
| 8 |
+
plot_bgcolor: 'rgba(0,0,0,0)',
|
| 9 |
font: {
|
| 10 |
+
family: '-apple-system, BlinkMacSystemFont, "SF Pro Text", "Helvetica Neue", sans-serif',
|
| 11 |
+
color: '#000000', // Pure black for max contrast
|
| 12 |
+
size: 12 // Base font size increased
|
| 13 |
},
|
| 14 |
xaxis: {
|
| 15 |
+
gridcolor: '#d1d1d6', // Darker grid lines
|
| 16 |
+
linecolor: '#d1d1d6',
|
| 17 |
+
tickfont: { color: '#515154', size: 11 }, // Larger and darker ticks
|
| 18 |
+
title: { font: { color: '#000000', size: 12, weight: 600 } },
|
| 19 |
+
zerolinecolor: '#d1d1d6'
|
| 20 |
},
|
| 21 |
yaxis: {
|
| 22 |
+
gridcolor: '#d1d1d6',
|
| 23 |
+
linecolor: '#d1d1d6',
|
| 24 |
+
tickfont: { color: '#515154', size: 11 },
|
| 25 |
+
title: { font: { color: '#000000', size: 12, weight: 600 } },
|
| 26 |
+
zerolinecolor: '#d1d1d6'
|
| 27 |
},
|
| 28 |
legend: {
|
| 29 |
+
bgcolor: 'rgba(0,0,0,0)',
|
| 30 |
+
bordercolor: 'rgba(0,0,0,0)',
|
| 31 |
+
borderwidth: 0,
|
| 32 |
+
font: { color: '#000000', size: 11 },
|
| 33 |
orientation: 'h',
|
| 34 |
+
y: 0.99,
|
| 35 |
x: 0.5,
|
| 36 |
+
xanchor: 'center',
|
| 37 |
+
yanchor: 'top'
|
| 38 |
},
|
| 39 |
hoverlabel: {
|
| 40 |
+
bgcolor: '#ffffff',
|
| 41 |
+
bordercolor: 'rgba(0,0,0,0.1)',
|
| 42 |
+
font: { color: '#000000', size: 12 },
|
| 43 |
+
namelength: -1
|
| 44 |
},
|
| 45 |
+
hovermode: 'closest', // Highlight closest point/element on hover
|
| 46 |
+
margin: { t: 30, r: 20, b: 60, l: 60 } // Increased margins
|
| 47 |
};
|
| 48 |
|
| 49 |
const plotlyConfig = {
|
| 50 |
+
displayModeBar: false, // Hide modebar completely
|
| 51 |
responsive: true,
|
|
|
|
| 52 |
displaylogo: false
|
| 53 |
};
|
| 54 |
|
| 55 |
// Animation settings for smooth transitions
|
| 56 |
const animationSettings = {
|
| 57 |
transition: {
|
| 58 |
+
duration: 750,
|
| 59 |
easing: 'cubic-in-out'
|
| 60 |
},
|
| 61 |
frame: {
|
| 62 |
+
duration: 750,
|
| 63 |
+
redraw: true
|
| 64 |
}
|
| 65 |
};
|
| 66 |
|
| 67 |
// Current state
|
| 68 |
let currentScalingDim = 'turn';
|
| 69 |
+
let currentProbingMode = 'byProgress';
|
| 70 |
+
let currentRankingMode = 'novelty';
|
| 71 |
|
| 72 |
// ============================================================================
|
| 73 |
+
// PERFORMANCE OPTIMIZATION UTILITIES
|
| 74 |
// ============================================================================
|
| 75 |
|
| 76 |
+
// Track which charts have been initialized
|
| 77 |
+
const initializedCharts = new Set();
|
| 78 |
+
|
| 79 |
+
// Lazy loading observer - only render charts when they enter viewport
|
| 80 |
+
const lazyLoadObserver = new IntersectionObserver((entries) => {
|
| 81 |
+
entries.forEach(entry => {
|
| 82 |
+
if (entry.isIntersecting) {
|
| 83 |
+
const section = entry.target;
|
| 84 |
+
const sectionId = section.id;
|
| 85 |
+
|
| 86 |
+
if (!initializedCharts.has(sectionId)) {
|
| 87 |
+
initializedCharts.add(sectionId);
|
| 88 |
+
|
| 89 |
+
// Use requestIdleCallback for non-blocking initialization
|
| 90 |
+
const initFn = () => {
|
| 91 |
+
switch (sectionId) {
|
| 92 |
+
case 'scaling': initScalingCharts(); break;
|
| 93 |
+
case 'ranking': initRankingCharts(); break;
|
| 94 |
+
case 'turn': initTurnCharts(); break;
|
| 95 |
+
case 'entropy': initEntropyCharts(); break;
|
| 96 |
+
case 'error': initErrorChart(); break;
|
| 97 |
+
case 'probing': initProbingCharts(); break;
|
| 98 |
+
}
|
| 99 |
+
};
|
| 100 |
+
|
| 101 |
+
if ('requestIdleCallback' in window) {
|
| 102 |
+
requestIdleCallback(initFn, { timeout: 100 });
|
| 103 |
+
} else {
|
| 104 |
+
setTimeout(initFn, 0);
|
| 105 |
+
}
|
| 106 |
+
}
|
| 107 |
+
}
|
| 108 |
+
});
|
| 109 |
+
}, {
|
| 110 |
+
rootMargin: '100px 0px', // Start loading 100px before entering viewport
|
| 111 |
+
threshold: 0.01
|
| 112 |
+
});
|
| 113 |
+
|
| 114 |
+
// Debounce utility for hover effects
|
| 115 |
+
function debounce(fn, delay) {
|
| 116 |
+
let timeoutId;
|
| 117 |
+
return function (...args) {
|
| 118 |
+
clearTimeout(timeoutId);
|
| 119 |
+
timeoutId = setTimeout(() => fn.apply(this, args), delay);
|
| 120 |
+
};
|
| 121 |
+
}
|
| 122 |
+
|
| 123 |
+
// Throttle utility for frequent events
|
| 124 |
+
function throttle(fn, limit) {
|
| 125 |
+
let inThrottle = false;
|
| 126 |
+
return function (...args) {
|
| 127 |
+
if (!inThrottle) {
|
| 128 |
+
fn.apply(this, args);
|
| 129 |
+
inThrottle = true;
|
| 130 |
+
setTimeout(() => inThrottle = false, limit);
|
| 131 |
+
}
|
| 132 |
+
};
|
| 133 |
+
}
|
| 134 |
+
|
| 135 |
+
// Batch DOM updates using requestAnimationFrame
|
| 136 |
+
function batchUpdate(updateFn) {
|
| 137 |
+
return new Promise(resolve => {
|
| 138 |
+
requestAnimationFrame(() => {
|
| 139 |
+
updateFn();
|
| 140 |
+
resolve();
|
| 141 |
+
});
|
| 142 |
+
});
|
| 143 |
+
}
|
| 144 |
|
| 145 |
// ============================================================================
|
| 146 |
+
// SCALING ANALYSIS - 3 Charts with animated dimension switching
|
| 147 |
// ============================================================================
|
| 148 |
|
| 149 |
// Helper to normalize values to [0, 1]
|
|
|
|
| 210 |
'globem': [0, 50] // Python: y_min=0, y_max=50
|
| 211 |
};
|
| 212 |
|
| 213 |
+
// Populate shared legend for a section
|
| 214 |
+
function populateSharedLegend(containerId, models, colorMap) {
|
| 215 |
+
const container = document.getElementById(containerId);
|
| 216 |
+
if (!container) return;
|
| 217 |
+
|
| 218 |
+
container.innerHTML = models.map(model => {
|
| 219 |
+
const color = (colorMap && colorMap[model]) || '#888';
|
| 220 |
+
return `<div class="legend-item">
|
| 221 |
+
<span class="legend-color" style="background: ${color}"></span>
|
| 222 |
+
<span>${model}</span>
|
| 223 |
+
</div>`;
|
| 224 |
+
}).join('');
|
| 225 |
+
}
|
| 226 |
+
|
| 227 |
function initScalingCharts() {
|
| 228 |
+
// Check if data is loaded
|
| 229 |
+
if (typeof DDR_DATA === 'undefined' || !DDR_DATA.scaling) {
|
| 230 |
+
console.warn('DDR_DATA not loaded yet, retrying...');
|
| 231 |
+
setTimeout(initScalingCharts, 100);
|
| 232 |
+
return;
|
| 233 |
+
}
|
| 234 |
+
|
| 235 |
const scenarios = ['mimic', '10k', 'globem'];
|
| 236 |
|
| 237 |
scenarios.forEach(scenario => {
|
|
|
|
| 257 |
x: modelNormX,
|
| 258 |
y: data[model].accuracy,
|
| 259 |
mode: 'lines+markers',
|
| 260 |
+
name: model, // CRITICAL: Set model name for legend
|
| 261 |
line: { color: DDR_DATA.modelColors[model] || '#888', width: 2 },
|
| 262 |
marker: { size: 6, color: DDR_DATA.modelColors[model] || '#888' },
|
| 263 |
hovertemplate: `<b>${model}</b><br>Turn: %{customdata}<br>Accuracy: %{y:.2f}%<extra></extra>`,
|
|
|
|
| 271 |
...darkLayout,
|
| 272 |
xaxis: {
|
| 273 |
...darkLayout.xaxis,
|
| 274 |
+
title: { text: 'Number of Interaction Turns', font: { size: 11, color: '#1d1d1f' } },
|
| 275 |
type: 'linear', // ALWAYS LINEAR
|
| 276 |
range: [-0.05, 1.05], // FIXED RANGE
|
| 277 |
tickmode: 'array',
|
|
|
|
| 281 |
},
|
| 282 |
yaxis: {
|
| 283 |
...darkLayout.yaxis,
|
| 284 |
+
title: { text: 'Accuracy (%)', font: { size: 11, color: '#1d1d1f' } },
|
| 285 |
dtick: 5,
|
| 286 |
range: yRange
|
| 287 |
},
|
| 288 |
+
showlegend: false // Use shared legend instead
|
| 289 |
};
|
| 290 |
|
| 291 |
Plotly.newPlot(`scaling-${scenario}`, traces, layout, plotlyConfig);
|
| 292 |
});
|
|
|
|
| 293 |
|
| 294 |
+
// Populate shared legend with models from first scenario
|
| 295 |
+
const firstScenario = scenarios.find(s => DDR_DATA.scaling[s]);
|
| 296 |
+
if (firstScenario) {
|
| 297 |
+
const models = Object.keys(DDR_DATA.scaling[firstScenario]);
|
| 298 |
+
populateSharedLegend('scaling-legend', models, DDR_DATA.modelColors);
|
|
|
|
| 299 |
}
|
| 300 |
+
|
| 301 |
+
// Apply hover effects after charts are rendered
|
| 302 |
+
setTimeout(() => applyHoverEffectsForSection('scaling'), 100);
|
| 303 |
+
}
|
| 304 |
|
| 305 |
function updateScalingCharts(dimension) {
|
| 306 |
const scenarios = ['mimic', '10k', 'globem'];
|
|
|
|
| 336 |
let offset = 0;
|
| 337 |
|
| 338 |
const hoverLabels = { 'turn': 'Turns', 'token': 'Tokens', 'cost': 'Cost' };
|
|
|
|
| 339 |
|
| 340 |
models.forEach((model, i) => {
|
| 341 |
const len = data[model].turns.length;
|
|
|
|
| 354 |
x: modelNormX,
|
| 355 |
y: data[model].accuracy,
|
| 356 |
customdata: rawValues,
|
| 357 |
+
name: model, // CRITICAL: Preserve model name
|
| 358 |
+
mode: 'lines+markers',
|
| 359 |
hovertemplate: `<b>${model}</b><br>${hoverLabels[dimension]}: %{customdata}<br>Accuracy: %{y:.2f}%<extra></extra>`
|
| 360 |
});
|
| 361 |
});
|
| 362 |
|
| 363 |
+
// Two-Phase Animation: Points Only -> Add Lines with Drawing Effect
|
|
|
|
| 364 |
const graphDiv = document.getElementById(`scaling-${scenario}`);
|
| 365 |
|
| 366 |
// Phase 1: Update to markers-only mode and animate points
|
|
|
|
| 390 |
redraw: true
|
| 391 |
}
|
| 392 |
}).then(() => {
|
| 393 |
+
// Phase 2: Add lines back with drawing animation
|
| 394 |
+
// CRITICAL: Pre-hide lines BEFORE react renders them
|
| 395 |
const linesAndMarkersTraces = newTraces.map(trace => ({
|
| 396 |
...trace,
|
| 397 |
+
mode: 'lines+markers',
|
| 398 |
+
line: {
|
| 399 |
+
...trace.line,
|
| 400 |
+
// Start with invisible line (will be animated in)
|
| 401 |
+
width: 0
|
| 402 |
+
}
|
| 403 |
}));
|
| 404 |
|
| 405 |
+
// First, add the lines with width 0 (invisible)
|
| 406 |
Plotly.react(`scaling-${scenario}`, linesAndMarkersTraces, {
|
| 407 |
...graphDiv.layout
|
| 408 |
}, plotlyConfig).then(() => {
|
| 409 |
+
// Now set line width back and prepare for stroke animation
|
| 410 |
+
const visibleTraces = newTraces.map(trace => ({
|
| 411 |
+
...trace,
|
| 412 |
+
mode: 'lines+markers'
|
| 413 |
+
}));
|
| 414 |
+
|
| 415 |
+
// Immediately query paths and set them to hidden state BEFORE making visible
|
| 416 |
+
const paths = graphDiv.querySelectorAll('.scatterlayer .trace .lines path');
|
| 417 |
+
|
| 418 |
+
// Pre-set all paths to invisible using stroke-dashoffset
|
| 419 |
+
paths.forEach((path) => {
|
| 420 |
+
const len = path.getTotalLength();
|
| 421 |
+
if (len > 0) {
|
| 422 |
+
path.style.transition = 'none';
|
| 423 |
+
path.style.strokeDasharray = len + ' ' + len;
|
| 424 |
+
path.style.strokeDashoffset = len;
|
| 425 |
+
}
|
| 426 |
+
});
|
| 427 |
+
|
| 428 |
+
// Now make lines visible (they're hidden by dashoffset)
|
| 429 |
+
Plotly.restyle(`scaling-${scenario}`, {
|
| 430 |
+
'line.width': models.map(() => 2)
|
| 431 |
+
}).then(() => {
|
| 432 |
+
// Force reflow
|
| 433 |
+
graphDiv.getBoundingClientRect();
|
| 434 |
+
|
| 435 |
+
// Start the stroke animation after a short delay
|
| 436 |
requestAnimationFrame(() => {
|
| 437 |
+
paths.forEach((path) => {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 438 |
const len = path.getTotalLength();
|
|
|
|
| 439 |
if (len > 0) {
|
| 440 |
+
path.style.transition = 'stroke-dashoffset 0.8s ease-out';
|
| 441 |
+
path.style.strokeDashoffset = '0';
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 442 |
}
|
| 443 |
});
|
| 444 |
});
|
|
|
|
| 448 |
});
|
| 449 |
}
|
| 450 |
|
| 451 |
+
// Dimension toggle event listeners for SCALING only
|
| 452 |
+
document.addEventListener('DOMContentLoaded', () => {
|
| 453 |
+
const scalingButtons = document.querySelectorAll('#scaling .dim-btn');
|
| 454 |
+
scalingButtons.forEach(btn => {
|
| 455 |
+
btn.addEventListener('click', () => {
|
| 456 |
+
// Only update scaling buttons
|
| 457 |
+
scalingButtons.forEach(b => b.classList.remove('active'));
|
| 458 |
+
btn.classList.add('active');
|
| 459 |
+
|
| 460 |
+
const dimension = btn.dataset.dim;
|
| 461 |
+
currentScalingDim = dimension;
|
| 462 |
+
updateScalingCharts(dimension);
|
| 463 |
+
});
|
| 464 |
});
|
| 465 |
});
|
| 466 |
|
|
|
|
| 500 |
return RANKING_DISPLAY_NAMES[model] || model;
|
| 501 |
}
|
| 502 |
|
|
|
|
|
|
|
| 503 |
function renderRankingCharts(mode, animate = false) {
|
| 504 |
const scenarios = [
|
| 505 |
{ key: 'MIMIC', id: 'mimic' },
|
|
|
|
| 511 |
const rawData = DDR_DATA.ranking[key];
|
| 512 |
if (!rawData) return;
|
| 513 |
|
| 514 |
+
// 1. Establish Base Order (Always sorted by Novelty/BT Rank initially)
|
| 515 |
+
// This ensures traces maintain object identity for animation
|
| 516 |
+
const baseModels = [...rawData].sort((a, b) => a.bt_rank - b.bt_rank);
|
| 517 |
+
const topN = baseModels.length;
|
| 518 |
+
|
| 519 |
+
// 2. Calculate Target Y-Positions based on current mode
|
| 520 |
+
// We need to know where each model *should* be
|
| 521 |
+
let sortedIndices;
|
| 522 |
if (mode === 'novelty') {
|
| 523 |
+
// In novelty mode, order matches baseModels (0, 1, 2...)
|
| 524 |
+
sortedIndices = baseModels.map((_, i) => i);
|
| 525 |
} else {
|
| 526 |
+
// In accuracy mode, we need to find the rank index of each baseModel
|
| 527 |
+
// Sort a copy to find the target order
|
| 528 |
+
const accSorted = [...baseModels].map((m, i) => ({ model: m.model, acc_rank: m.acc_rank, originalIdx: i }))
|
| 529 |
+
.sort((a, b) => a.acc_rank - b.acc_rank);
|
| 530 |
+
|
| 531 |
+
// Map: originalIdx -> targetY
|
| 532 |
+
const indexMap = new Array(topN);
|
| 533 |
+
accSorted.forEach((item, targetY) => {
|
| 534 |
+
indexMap[item.originalIdx] = targetY;
|
| 535 |
+
});
|
| 536 |
+
sortedIndices = indexMap;
|
| 537 |
}
|
| 538 |
|
| 539 |
+
// 3. Prepare Data Arrays using Base Order
|
| 540 |
+
// Invert Y-values so Rank 1 (Best) is at the TOP
|
| 541 |
+
const yValues = sortedIndices.map(idx => topN - 1 - idx);
|
| 542 |
+
const xBt = baseModels.map(m => m.bt_rank);
|
| 543 |
+
const xAcc = baseModels.map(m => m.acc_rank);
|
| 544 |
+
const names = baseModels.map(m => getDisplayName(m.model));
|
| 545 |
+
const colors = baseModels.map(m => m.is_proprietary ? PROPRIETARY_COLOR : OPENSOURCE_COLOR);
|
| 546 |
+
|
| 547 |
const traces = [];
|
| 548 |
|
| 549 |
+
// Trace 0: Connection Lines (Consolidated)
|
| 550 |
+
const lineX = [];
|
| 551 |
+
const lineY = [];
|
| 552 |
+
baseModels.forEach((_, i) => {
|
| 553 |
+
lineX.push(xBt[i], xAcc[i], null);
|
| 554 |
+
lineY.push(yValues[i], yValues[i], null);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 555 |
});
|
| 556 |
|
|
|
|
| 557 |
traces.push({
|
| 558 |
+
x: lineX,
|
| 559 |
+
y: lineY,
|
| 560 |
+
mode: 'lines',
|
| 561 |
+
line: {
|
| 562 |
+
color: 'rgba(148, 163, 184, 0.4)',
|
| 563 |
+
width: 1.5,
|
| 564 |
+
dash: 'dash'
|
| 565 |
+
},
|
| 566 |
+
showlegend: false,
|
| 567 |
+
hoverinfo: 'skip'
|
| 568 |
+
});
|
| 569 |
+
|
| 570 |
+
// Trace 1: Novelty Rank Points
|
| 571 |
+
traces.push({
|
| 572 |
+
x: xBt,
|
| 573 |
+
y: yValues,
|
| 574 |
mode: 'markers',
|
| 575 |
name: 'Novelty Rank',
|
| 576 |
marker: {
|
| 577 |
size: mode === 'novelty' ? 12 : 10,
|
| 578 |
symbol: 'circle',
|
| 579 |
+
color: colors,
|
| 580 |
line: { color: '#fff', width: 1.5 }
|
| 581 |
},
|
| 582 |
+
text: baseModels.map(m => `<b>${getDisplayName(m.model)}</b><br>Novelty: #${m.bt_rank}<br>Win Rate: ${m.win_rate}%`),
|
| 583 |
hovertemplate: '%{text}<extra></extra>'
|
| 584 |
});
|
| 585 |
|
| 586 |
+
// Trace 2: Accuracy Rank Points
|
| 587 |
traces.push({
|
| 588 |
+
x: xAcc,
|
| 589 |
+
y: yValues,
|
| 590 |
mode: 'markers',
|
| 591 |
name: 'Accuracy Rank',
|
| 592 |
marker: {
|
| 593 |
size: mode === 'accuracy' ? 12 : 10,
|
| 594 |
symbol: 'diamond-open',
|
| 595 |
+
color: colors,
|
| 596 |
line: { width: 2 }
|
| 597 |
},
|
| 598 |
+
text: baseModels.map(m => `<b>${getDisplayName(m.model)}</b><br>Accuracy: #${m.acc_rank}<br>${m.accuracy}%`),
|
| 599 |
hovertemplate: '%{text}<extra></extra>'
|
| 600 |
});
|
| 601 |
|
| 602 |
+
// Trace 3: Animated Y-Axis Labels (Model Names)
|
| 603 |
+
// Place them to the left of the max rank.
|
| 604 |
+
// X-axis is inverted (Max -> 1), so we place labels at Max + padding
|
| 605 |
+
// We want labels on the LEFT side.
|
| 606 |
+
// If range is [topN + 8, 0.5], then topN + 8 is on the LEFT.
|
| 607 |
+
// So we place labels at topN + 1.
|
| 608 |
+
const labelX = new Array(topN).fill(topN + 1);
|
| 609 |
+
|
| 610 |
+
traces.push({
|
| 611 |
+
x: labelX,
|
| 612 |
+
y: yValues,
|
| 613 |
+
mode: 'text',
|
| 614 |
+
text: names,
|
| 615 |
+
textposition: 'middle left',
|
| 616 |
+
textfont: { size: 10, color: '#515154', family: '-apple-system, BlinkMacSystemFont, "SF Pro Text", sans-serif' },
|
| 617 |
+
hoverinfo: 'skip',
|
| 618 |
+
showlegend: false
|
| 619 |
+
});
|
| 620 |
+
|
| 621 |
+
// Calculate correlation (same as before)
|
| 622 |
+
const btRanks = baseModels.map(m => m.bt_rank);
|
| 623 |
+
const accRanks = baseModels.map(m => m.acc_rank);
|
| 624 |
const n = btRanks.length;
|
| 625 |
const meanBt = btRanks.reduce((a, b) => a + b, 0) / n;
|
| 626 |
const meanAcc = accRanks.reduce((a, b) => a + b, 0) / n;
|
|
|
|
| 638 |
...darkLayout,
|
| 639 |
xaxis: {
|
| 640 |
...darkLayout.xaxis,
|
| 641 |
+
title: { text: 'Rank', font: { size: 10, color: '#1d1d1f' } },
|
| 642 |
+
range: [topN + 8, 0.5], // Revert padding
|
| 643 |
+
tickmode: 'array', // Explicitly set ticks
|
| 644 |
+
tickvals: Array.from({ length: topN }, (_, i) => i + 1), // Only show ticks 1 to N
|
| 645 |
+
zeroline: false
|
| 646 |
},
|
| 647 |
yaxis: {
|
| 648 |
...darkLayout.yaxis,
|
| 649 |
+
showticklabels: false, // Hide native ticks
|
| 650 |
+
automargin: false, // We handle margin manually
|
| 651 |
+
range: [-1, topN + 2], // Add vertical padding
|
| 652 |
+
zeroline: false
|
|
|
|
|
|
|
| 653 |
},
|
| 654 |
showlegend: false,
|
| 655 |
annotations: [
|
|
|
|
| 660 |
yref: 'paper',
|
| 661 |
text: `ρ = ${rho.toFixed(2)}`,
|
| 662 |
showarrow: false,
|
| 663 |
+
font: { size: 11, color: '#515154', family: '-apple-system, BlinkMacSystemFont, "SF Pro Text", sans-serif' },
|
| 664 |
+
bgcolor: 'rgba(255, 255, 255, 0.9)',
|
| 665 |
borderpad: 4
|
| 666 |
},
|
| 667 |
{
|
|
|
|
| 671 |
yref: 'paper',
|
| 672 |
text: sortLabel,
|
| 673 |
showarrow: false,
|
| 674 |
+
font: { size: 10, color: mode === 'novelty' ? PROPRIETARY_COLOR : OPENSOURCE_COLOR, family: '-apple-system, BlinkMacSystemFont, "SF Pro Text", sans-serif' },
|
| 675 |
+
bgcolor: 'rgba(255, 255, 255, 0.9)',
|
| 676 |
borderpad: 4
|
| 677 |
}
|
| 678 |
],
|
| 679 |
+
// Adjust margins: Left needs to be smaller since labels are now inside the plot area (but visually left)
|
| 680 |
+
// Actually, since we extended X-range, we can keep normal margins or reduce left
|
| 681 |
+
margin: { t: 15, r: 15, b: 40, l: 20 }
|
| 682 |
};
|
| 683 |
|
| 684 |
if (animate) {
|
| 685 |
+
Plotly.animate(`ranking-${id}`, {
|
| 686 |
+
data: traces,
|
| 687 |
+
layout: layout
|
| 688 |
+
}, animationSettings);
|
| 689 |
} else {
|
| 690 |
Plotly.newPlot(`ranking-${id}`, traces, layout, plotlyConfig);
|
| 691 |
}
|
|
|
|
| 693 |
}
|
| 694 |
|
| 695 |
function initRankingCharts() {
|
| 696 |
+
// Check if data is loaded
|
| 697 |
+
if (typeof DDR_DATA === 'undefined' || !DDR_DATA.ranking) {
|
| 698 |
+
setTimeout(initRankingCharts, 100);
|
| 699 |
+
return;
|
| 700 |
+
}
|
| 701 |
renderRankingCharts('novelty', false);
|
| 702 |
}
|
| 703 |
|
| 704 |
// Ranking mode toggle event listener
|
| 705 |
+
document.addEventListener('DOMContentLoaded', () => {
|
| 706 |
+
const rankingButtons = document.querySelectorAll('#ranking .dim-btn');
|
| 707 |
+
rankingButtons.forEach(btn => {
|
| 708 |
+
btn.addEventListener('click', () => {
|
| 709 |
+
const mode = btn.dataset.mode;
|
| 710 |
+
if (mode === currentRankingMode) return;
|
| 711 |
+
|
| 712 |
+
// Only update ranking buttons
|
| 713 |
+
rankingButtons.forEach(b => b.classList.remove('active'));
|
| 714 |
+
btn.classList.add('active');
|
| 715 |
+
|
| 716 |
+
currentRankingMode = mode;
|
| 717 |
+
renderRankingCharts(mode, true);
|
| 718 |
+
});
|
| 719 |
});
|
| 720 |
});
|
| 721 |
|
| 722 |
// ============================================================================
|
| 723 |
// TURN DISTRIBUTION - 3 Charts (Ridgeline style)
|
| 724 |
// ============================================================================
|
|
|
|
| 725 |
const TURN_DISPLAY_NAMES = {
|
| 726 |
'run_api_deepseek_deepseek-chat': 'DeepSeek-V3.2',
|
| 727 |
'qwen3-next-80b-a3b-instruct': 'Qwen3-Next-80BA3B',
|
|
|
|
| 758 |
}
|
| 759 |
|
| 760 |
function initTurnCharts() {
|
| 761 |
+
// Check if data is loaded
|
| 762 |
+
if (typeof DDR_DATA === 'undefined' || !DDR_DATA.turn) {
|
| 763 |
+
setTimeout(initTurnCharts, 100);
|
| 764 |
+
return;
|
| 765 |
+
}
|
| 766 |
+
|
| 767 |
const scenarios = ['mimic', '10k', 'globem'];
|
| 768 |
|
| 769 |
+
// Family colors matching the Python script
|
| 770 |
const familyColors = {
|
| 771 |
+
'claude': '#D97706',
|
| 772 |
+
'gpt': '#10A37F',
|
| 773 |
+
'gemini': '#4285F4',
|
| 774 |
+
'deepseek': '#1E3A8A',
|
| 775 |
+
'glm': '#7C3AED',
|
| 776 |
+
'kimi': '#DC2626',
|
| 777 |
+
'minimax': '#EC4899',
|
| 778 |
'qwen': '#0EA5E9',
|
| 779 |
'llama': '#F59E0B'
|
| 780 |
};
|
|
|
|
| 784 |
for (const [family, color] of Object.entries(familyColors)) {
|
| 785 |
if (lower.includes(family)) return color;
|
| 786 |
}
|
| 787 |
+
return '#666666';
|
| 788 |
}
|
| 789 |
|
| 790 |
scenarios.forEach(scenario => {
|
| 791 |
const data = DDR_DATA.turn[scenario];
|
| 792 |
if (!data) return;
|
| 793 |
|
| 794 |
+
// Sort by median descending to get top 15
|
| 795 |
const sortedData = [...data].sort((a, b) => b.median - a.median);
|
| 796 |
|
| 797 |
+
// Limit to top 15 models, then reverse so highest median is at top of chart
|
| 798 |
+
const displayData = sortedData.slice(0, 15).reverse();
|
| 799 |
|
| 800 |
const traces = [];
|
|
|
|
| 801 |
const binCenters = [5, 15, 25, 35, 45, 55, 65, 75, 85, 95];
|
| 802 |
|
|
|
|
| 803 |
displayData.forEach((model, idx) => {
|
| 804 |
const color = getModelColor(model.model);
|
| 805 |
const yOffset = idx;
|
| 806 |
const displayName = getTurnDisplayName(model.model);
|
|
|
|
|
|
|
| 807 |
const maxDist = Math.max(...model.distribution) || 1;
|
|
|
|
| 808 |
|
| 809 |
+
// Original bin centers and values
|
| 810 |
+
const binCenters = [5, 15, 25, 35, 45, 55, 65, 75, 85, 95];
|
| 811 |
+
const binValues = model.distribution.map(d => d / maxDist * 0.75);
|
| 812 |
+
|
| 813 |
+
// Interpolate more points for smoother curve (similar to KDE)
|
| 814 |
+
const xSmooth = [];
|
| 815 |
+
const ySmooth = [];
|
| 816 |
+
|
| 817 |
+
// Add start point at baseline
|
| 818 |
+
xSmooth.push(0);
|
| 819 |
+
ySmooth.push(yOffset);
|
| 820 |
+
|
| 821 |
+
// Interpolate between bin centers for smoothness
|
| 822 |
+
for (let i = 0; i < binCenters.length; i++) {
|
| 823 |
+
xSmooth.push(binCenters[i]);
|
| 824 |
+
ySmooth.push(yOffset + binValues[i]);
|
| 825 |
+
}
|
| 826 |
+
|
| 827 |
+
// Add end point at baseline
|
| 828 |
+
xSmooth.push(100);
|
| 829 |
+
ySmooth.push(yOffset);
|
| 830 |
+
|
| 831 |
+
// Create the curve trace with spline smoothing
|
| 832 |
traces.push({
|
| 833 |
+
x: xSmooth,
|
| 834 |
+
y: ySmooth,
|
| 835 |
mode: 'lines',
|
| 836 |
+
line: {
|
| 837 |
+
color: color,
|
| 838 |
+
width: 2,
|
| 839 |
+
shape: 'spline', // Smooth spline interpolation
|
| 840 |
+
smoothing: 1.3 // Smoothing factor
|
| 841 |
+
},
|
| 842 |
fill: 'toself',
|
| 843 |
+
fillcolor: color + '60',
|
|
|
|
| 844 |
name: displayName,
|
| 845 |
+
hovertemplate: `<b>${displayName}</b><br>Median: ${model.median}<extra></extra>`,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 846 |
showlegend: false
|
| 847 |
});
|
| 848 |
});
|
|
|
|
| 851 |
...darkLayout,
|
| 852 |
xaxis: {
|
| 853 |
...darkLayout.xaxis,
|
| 854 |
+
title: { text: 'Number of Turns', font: { size: 12, color: '#1d1d1f' } },
|
| 855 |
range: [0, 100],
|
| 856 |
dtick: 20
|
| 857 |
},
|
| 858 |
yaxis: {
|
| 859 |
...darkLayout.yaxis,
|
| 860 |
tickmode: 'array',
|
| 861 |
+
tickvals: displayData.map((_, i) => i + 0.35),
|
| 862 |
ticktext: displayData.map(m => getTurnDisplayName(m.model)),
|
| 863 |
automargin: true,
|
| 864 |
+
range: [-0.5, displayData.length],
|
| 865 |
+
showgrid: false,
|
| 866 |
+
zeroline: false
|
| 867 |
},
|
| 868 |
margin: { ...darkLayout.margin, l: 140 },
|
| 869 |
showlegend: false
|
|
|
|
| 877 |
// PROBING RESULTS - 3 Charts with animated mode switching
|
| 878 |
// ============================================================================
|
| 879 |
function initProbingCharts() {
|
| 880 |
+
// Check if data is loaded
|
| 881 |
+
if (typeof DDR_DATA === 'undefined' || !DDR_DATA.probing) {
|
| 882 |
+
setTimeout(initProbingCharts, 100);
|
| 883 |
+
return;
|
| 884 |
+
}
|
| 885 |
+
renderProbingCharts('byProgress');
|
| 886 |
}
|
| 887 |
|
| 888 |
function renderProbingCharts(mode) {
|
|
|
|
| 890 |
const scenarioIds = { 'mimic': 'mimic', 'globem': 'globem', '10k': '10k' };
|
| 891 |
|
| 892 |
scenarios.forEach(scenario => {
|
| 893 |
+
const modeKey = mode === 'byTurn' ? 'byTurn' : 'byProgress';
|
| 894 |
+
const data = DDR_DATA.probing[modeKey]?.[scenario];
|
| 895 |
if (!data) return;
|
| 896 |
|
| 897 |
const traces = [];
|
| 898 |
+
const allModels = Object.keys(data);
|
| 899 |
+
// Filter out 7B and 14B models
|
| 900 |
+
const models = allModels.filter(m => !m.includes('7B') && !m.includes('14B'));
|
| 901 |
|
| 902 |
models.forEach(model => {
|
| 903 |
const modelData = data[model];
|
| 904 |
const xKey = mode === 'byTurn' ? 'turns' : 'progress';
|
| 905 |
const xLabel = mode === 'byTurn' ? 'Turn' : 'Progress (%)';
|
| 906 |
|
| 907 |
+
// Main line - CONSISTENT STYLE
|
| 908 |
traces.push({
|
| 909 |
x: modelData[xKey],
|
| 910 |
y: modelData.logprob,
|
| 911 |
+
mode: 'lines+markers', // Show both lines and data points
|
| 912 |
name: model,
|
| 913 |
line: {
|
| 914 |
+
color: (DDR_DATA.modelColors && DDR_DATA.modelColors[model]) || '#888',
|
| 915 |
width: 2
|
| 916 |
},
|
| 917 |
+
marker: { size: 6, color: (DDR_DATA.modelColors && DDR_DATA.modelColors[model]) || '#888' },
|
|
|
|
|
|
|
|
|
|
| 918 |
hovertemplate: `<b>${model}</b><br>${xLabel}: %{x}<br>Log Prob: %{y:.2f}<extra></extra>`
|
| 919 |
});
|
| 920 |
|
|
|
|
| 927 |
x: [...modelData[xKey], ...modelData[xKey].slice().reverse()],
|
| 928 |
y: [...upper, ...lower.slice().reverse()],
|
| 929 |
fill: 'toself',
|
| 930 |
+
fillcolor: ((DDR_DATA.modelColors && DDR_DATA.modelColors[model]) || '#888') + '25',
|
| 931 |
line: { width: 0 },
|
| 932 |
showlegend: false,
|
| 933 |
hoverinfo: 'skip'
|
|
|
|
| 935 |
}
|
| 936 |
});
|
| 937 |
|
| 938 |
+
// Set different x-axis ranges based on mode
|
| 939 |
+
const xaxisConfig = mode === 'byTurn' ? {
|
| 940 |
+
title: { text: 'Turn', font: { size: 11, color: '#1d1d1f' } },
|
| 941 |
+
range: [0.5, 10.5], // Turns from 1-10
|
| 942 |
+
dtick: 1
|
| 943 |
+
} : {
|
| 944 |
+
title: { text: 'Interaction Progress (%)', font: { size: 11, color: '#1d1d1f' } },
|
| 945 |
+
range: [0, 100], // Progress from 0-100%
|
| 946 |
+
dtick: 10
|
| 947 |
+
};
|
| 948 |
+
|
| 949 |
const layout = {
|
| 950 |
...darkLayout,
|
| 951 |
xaxis: {
|
| 952 |
...darkLayout.xaxis,
|
| 953 |
+
...xaxisConfig
|
| 954 |
},
|
| 955 |
yaxis: {
|
| 956 |
...darkLayout.yaxis,
|
| 957 |
+
title: { text: 'Avg Log Probability', font: { size: 11, color: '#1d1d1f' } }
|
| 958 |
},
|
| 959 |
+
showlegend: false // Use shared legend instead
|
| 960 |
};
|
| 961 |
|
| 962 |
+
const chartId = `probing-${scenarioIds[scenario]}`;
|
| 963 |
+
|
| 964 |
+
// Check if chart exists
|
| 965 |
+
const chartDiv = document.getElementById(chartId);
|
| 966 |
+
if (chartDiv && chartDiv.data) {
|
| 967 |
+
// Use animate for smooth transition with layout update
|
| 968 |
+
Plotly.animate(chartId, {
|
| 969 |
+
data: traces,
|
| 970 |
+
layout: layout
|
| 971 |
+
}, animationSettings);
|
| 972 |
+
} else {
|
| 973 |
+
// Initial plot
|
| 974 |
+
Plotly.newPlot(chartId, traces, layout, plotlyConfig);
|
| 975 |
+
}
|
| 976 |
});
|
|
|
|
| 977 |
|
| 978 |
+
// Populate shared legend with filtered models from first available scenario
|
| 979 |
+
const firstScenario = scenarios.find(s => DDR_DATA.probing[mode === 'byTurn' ? 'byTurn' : 'byProgress']?.[s]);
|
| 980 |
+
if (firstScenario) {
|
| 981 |
+
const allModels = Object.keys(DDR_DATA.probing[mode === 'byTurn' ? 'byTurn' : 'byProgress'][firstScenario]);
|
| 982 |
+
const filteredModels = allModels.filter(m => !m.includes('7B') && !m.includes('14B'));
|
| 983 |
+
populateSharedLegend('probing-legend', filteredModels, DDR_DATA.modelColors);
|
| 984 |
+
}
|
| 985 |
|
| 986 |
+
// Apply hover effects after charts are rendered
|
| 987 |
+
setTimeout(() => applyHoverEffectsForSection('probing'), 100);
|
| 988 |
+
}
|
| 989 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 990 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 991 |
|
| 992 |
// ============================================================================
|
| 993 |
// ERROR ANALYSIS - Hierarchical Bar Chart
|
| 994 |
// ============================================================================
|
| 995 |
function initErrorChart() {
|
| 996 |
+
// Check if data is loaded
|
| 997 |
+
if (typeof DDR_DATA === 'undefined') {
|
| 998 |
+
setTimeout(initErrorChart, 100);
|
| 999 |
+
return;
|
| 1000 |
+
}
|
| 1001 |
+
|
| 1002 |
const data = DDR_DATA.error;
|
| 1003 |
if (!data || data.length === 0) return;
|
| 1004 |
|
|
|
|
| 1022 |
},
|
| 1023 |
text: data.map(d => `${d.percentage}%`),
|
| 1024 |
textposition: 'outside',
|
| 1025 |
+
textfont: { size: 11, color: '#1d1d1f' },
|
| 1026 |
hovertemplate: '<b>%{x}</b><br>%{y:.1f}%<br>Count: %{customdata}<extra></extra>',
|
| 1027 |
customdata: data.map(d => d.count),
|
| 1028 |
showlegend: false
|
|
|
|
| 1039 |
y: maxPct * 1.15,
|
| 1040 |
text: `<b>${catName}</b>`,
|
| 1041 |
showarrow: false,
|
| 1042 |
+
font: { size: 10, color: '#1d1d1f' },
|
| 1043 |
xanchor: 'center',
|
| 1044 |
yanchor: 'bottom'
|
| 1045 |
});
|
|
|
|
| 1050 |
xaxis: {
|
| 1051 |
...darkLayout.xaxis,
|
| 1052 |
tickangle: -30,
|
| 1053 |
+
tickfont: { size: 10, color: '#515154' }
|
| 1054 |
},
|
| 1055 |
yaxis: {
|
| 1056 |
...darkLayout.yaxis,
|
| 1057 |
+
title: { text: 'Percentage (%)', font: { size: 11, color: '#1d1d1f' } },
|
| 1058 |
range: [0, maxPct * 1.25]
|
| 1059 |
},
|
| 1060 |
annotations: annotations,
|
|
|
|
| 1065 |
}
|
| 1066 |
|
| 1067 |
// ============================================================================
|
| 1068 |
+
// ENTROPY ANALYSIS - Scatter plots by model (Entropy vs Coverage, Opacity = Accuracy)
|
| 1069 |
+
// ============================================================================
|
| 1070 |
+
const ENTROPY_MODELS = [
|
| 1071 |
+
'GPT-5.2',
|
| 1072 |
+
'Claude-4.5-Sonnet',
|
| 1073 |
+
'Gemini-3-Flash',
|
| 1074 |
+
'GLM-4.6',
|
| 1075 |
+
'Qwen3-Next-80B-A3B',
|
| 1076 |
+
'DeepSeek-V3.2'
|
| 1077 |
+
];
|
| 1078 |
+
|
| 1079 |
+
let currentEntropyScenario = '10k';
|
| 1080 |
+
|
| 1081 |
+
function initEntropyCharts() {
|
| 1082 |
+
if (typeof ENTROPY_DATA === 'undefined') {
|
| 1083 |
+
// Retry if data not loaded yet
|
| 1084 |
+
setTimeout(initEntropyCharts, 100);
|
| 1085 |
+
return;
|
| 1086 |
+
}
|
| 1087 |
+
|
| 1088 |
+
// Setup toggle buttons
|
| 1089 |
+
document.querySelectorAll('[data-entropy-scenario]').forEach(btn => {
|
| 1090 |
+
btn.addEventListener('click', () => {
|
| 1091 |
+
document.querySelectorAll('[data-entropy-scenario]').forEach(b => b.classList.remove('active'));
|
| 1092 |
+
btn.classList.add('active');
|
| 1093 |
+
currentEntropyScenario = btn.dataset.entropyScenario;
|
| 1094 |
+
renderEntropyCharts(currentEntropyScenario);
|
| 1095 |
+
});
|
| 1096 |
+
});
|
| 1097 |
+
|
| 1098 |
+
// Initial render
|
| 1099 |
+
renderEntropyCharts('10k');
|
| 1100 |
+
}
|
| 1101 |
+
|
| 1102 |
+
function renderEntropyCharts(scenario) {
|
| 1103 |
+
const entropyData = ENTROPY_DATA;
|
| 1104 |
+
const datasetInfo = entropyData.datasets[scenario];
|
| 1105 |
+
|
| 1106 |
+
if (!datasetInfo) {
|
| 1107 |
+
console.error(`No entropy data for scenario: ${scenario}`);
|
| 1108 |
+
return;
|
| 1109 |
+
}
|
| 1110 |
+
|
| 1111 |
+
const points = datasetInfo.points;
|
| 1112 |
+
const yMax = datasetInfo.y_max || 1;
|
| 1113 |
+
const accMin = datasetInfo.acc_min || 0;
|
| 1114 |
+
const accMax = datasetInfo.acc_max || 100;
|
| 1115 |
+
const hasAccRange = accMax > accMin;
|
| 1116 |
+
const colors = entropyData.modelColors;
|
| 1117 |
+
|
| 1118 |
+
// Group points by model
|
| 1119 |
+
const modelGroups = {};
|
| 1120 |
+
points.forEach(p => {
|
| 1121 |
+
if (!modelGroups[p.model]) {
|
| 1122 |
+
modelGroups[p.model] = [];
|
| 1123 |
+
}
|
| 1124 |
+
modelGroups[p.model].push(p);
|
| 1125 |
+
});
|
| 1126 |
+
|
| 1127 |
+
// Render each model's subplot
|
| 1128 |
+
ENTROPY_MODELS.forEach((model, idx) => {
|
| 1129 |
+
const chartId = `entropy-model-${idx}`;
|
| 1130 |
+
const titleId = `entropy-model-${idx}-title`;
|
| 1131 |
+
const color = colors[model] || '#888888';
|
| 1132 |
+
const pts = modelGroups[model] || [];
|
| 1133 |
+
|
| 1134 |
+
// Update title with sample count
|
| 1135 |
+
const titleEl = document.getElementById(titleId);
|
| 1136 |
+
if (titleEl) {
|
| 1137 |
+
titleEl.textContent = `${model} (n=${pts.length})`;
|
| 1138 |
+
}
|
| 1139 |
+
|
| 1140 |
+
if (pts.length === 0) {
|
| 1141 |
+
// Show empty chart with message
|
| 1142 |
+
const layout = {
|
| 1143 |
+
...darkLayout,
|
| 1144 |
+
xaxis: { ...darkLayout.xaxis, range: [0.6, 1.05], title: { text: 'Entropy', font: { size: 10, color: '#1d1d1f' } } },
|
| 1145 |
+
yaxis: { ...darkLayout.yaxis, range: [-0.05, yMax], title: { text: 'Coverage', font: { size: 10, color: '#1d1d1f' } } },
|
| 1146 |
+
annotations: [{
|
| 1147 |
+
text: 'No data',
|
| 1148 |
+
xref: 'paper', yref: 'paper',
|
| 1149 |
+
x: 0.5, y: 0.5,
|
| 1150 |
+
showarrow: false,
|
| 1151 |
+
font: { size: 14, color: '#888' }
|
| 1152 |
+
}]
|
| 1153 |
+
};
|
| 1154 |
+
Plotly.newPlot(chartId, [], layout, plotlyConfig);
|
| 1155 |
+
return;
|
| 1156 |
+
}
|
| 1157 |
+
|
| 1158 |
+
// Calculate alphas based on accuracy
|
| 1159 |
+
const alphas = pts.map(p => {
|
| 1160 |
+
if (hasAccRange) {
|
| 1161 |
+
return 0.15 + (p.accuracy - accMin) / (accMax - accMin) * 0.85;
|
| 1162 |
+
}
|
| 1163 |
+
return 0.7;
|
| 1164 |
+
});
|
| 1165 |
+
|
| 1166 |
+
const trace = {
|
| 1167 |
+
x: pts.map(p => p.entropy),
|
| 1168 |
+
y: pts.map(p => p.coverage),
|
| 1169 |
+
mode: 'markers',
|
| 1170 |
+
type: 'scatter',
|
| 1171 |
+
marker: {
|
| 1172 |
+
color: color,
|
| 1173 |
+
size: 7,
|
| 1174 |
+
opacity: alphas,
|
| 1175 |
+
line: { color: '#333', width: 0.5 }
|
| 1176 |
+
},
|
| 1177 |
+
name: model,
|
| 1178 |
+
text: pts.map(p => `Entropy: ${p.entropy.toFixed(3)}<br>Coverage: ${(p.coverage * 100).toFixed(1)}%<br>Accuracy: ${p.accuracy.toFixed(1)}%`),
|
| 1179 |
+
hovertemplate: '<b>' + model + '</b><br>%{text}<extra></extra>',
|
| 1180 |
+
showlegend: false
|
| 1181 |
+
};
|
| 1182 |
+
|
| 1183 |
+
const layout = {
|
| 1184 |
+
...darkLayout,
|
| 1185 |
+
xaxis: {
|
| 1186 |
+
...darkLayout.xaxis,
|
| 1187 |
+
title: { text: 'Entropy', font: { size: 10, color: '#1d1d1f' } },
|
| 1188 |
+
range: [0.6, 1.05],
|
| 1189 |
+
dtick: 0.1
|
| 1190 |
+
},
|
| 1191 |
+
yaxis: {
|
| 1192 |
+
...darkLayout.yaxis,
|
| 1193 |
+
title: { text: 'Coverage', font: { size: 10, color: '#1d1d1f' } },
|
| 1194 |
+
range: [-0.05, yMax]
|
| 1195 |
+
},
|
| 1196 |
+
margin: { t: 20, r: 20, b: 50, l: 50 }
|
| 1197 |
+
};
|
| 1198 |
+
|
| 1199 |
+
const chartDiv = document.getElementById(chartId);
|
| 1200 |
+
if (chartDiv) {
|
| 1201 |
+
// Apply CSS fade-out
|
| 1202 |
+
chartDiv.style.transition = 'opacity 0.3s ease';
|
| 1203 |
+
chartDiv.style.opacity = '0.3';
|
| 1204 |
+
|
| 1205 |
+
setTimeout(() => {
|
| 1206 |
+
// Update chart with react (faster than newPlot)
|
| 1207 |
+
Plotly.react(chartId, [trace], layout, plotlyConfig);
|
| 1208 |
+
|
| 1209 |
+
// Fade back in
|
| 1210 |
+
chartDiv.style.opacity = '1';
|
| 1211 |
+
|
| 1212 |
+
// Re-apply hover effects after chart update
|
| 1213 |
+
addHoverHighlight(chartId);
|
| 1214 |
+
}, 150);
|
| 1215 |
+
} else {
|
| 1216 |
+
Plotly.newPlot(chartId, [trace], layout, plotlyConfig);
|
| 1217 |
+
// Apply hover effects for new chart
|
| 1218 |
+
setTimeout(() => addHoverHighlight(chartId), 50);
|
| 1219 |
+
}
|
| 1220 |
+
});
|
| 1221 |
+
}
|
| 1222 |
+
|
| 1223 |
+
// ============================================================================
|
| 1224 |
+
// INITIALIZE ALL CHARTS - Using Lazy Loading for Performance
|
| 1225 |
// ============================================================================
|
| 1226 |
document.addEventListener('DOMContentLoaded', () => {
|
| 1227 |
+
// Register all sections for lazy loading
|
| 1228 |
+
const sections = document.querySelectorAll('section.section');
|
| 1229 |
+
sections.forEach(section => {
|
| 1230 |
+
lazyLoadObserver.observe(section);
|
| 1231 |
+
});
|
| 1232 |
+
|
| 1233 |
+
// Immediately initialize the first visible section (scaling) for instant feedback
|
| 1234 |
+
// Other sections will be lazy-loaded as user scrolls
|
| 1235 |
+
if (document.getElementById('scaling')) {
|
| 1236 |
+
initializedCharts.add('scaling');
|
| 1237 |
+
// Use setTimeout to not block the main thread
|
| 1238 |
+
setTimeout(() => initScalingCharts(), 0);
|
| 1239 |
+
}
|
| 1240 |
});
|
| 1241 |
|
| 1242 |
+
// Handle window resize with longer debounce for better performance
|
| 1243 |
let resizeTimeout;
|
| 1244 |
+
const resizeHandler = throttle(() => {
|
| 1245 |
+
// Only resize charts that have been initialized
|
| 1246 |
+
if (initializedCharts.has('scaling')) {
|
| 1247 |
+
['mimic', '10k', 'globem'].forEach(s => {
|
| 1248 |
+
const el = document.getElementById(`scaling-${s}`);
|
| 1249 |
+
if (el && el.data) Plotly.Plots.resize(el);
|
| 1250 |
+
});
|
| 1251 |
+
}
|
| 1252 |
+
if (initializedCharts.has('ranking')) {
|
| 1253 |
['mimic', '10k', 'globem'].forEach(s => {
|
| 1254 |
+
const el = document.getElementById(`ranking-${s}`);
|
| 1255 |
+
if (el && el.data) Plotly.Plots.resize(el);
|
|
|
|
|
|
|
| 1256 |
});
|
| 1257 |
+
}
|
| 1258 |
+
if (initializedCharts.has('turn')) {
|
| 1259 |
+
['mimic', '10k', 'globem'].forEach(s => {
|
| 1260 |
+
const el = document.getElementById(`turn-${s}`);
|
| 1261 |
+
if (el && el.data) Plotly.Plots.resize(el);
|
| 1262 |
+
});
|
| 1263 |
+
}
|
| 1264 |
+
if (initializedCharts.has('probing')) {
|
| 1265 |
+
['mimic', '10k', 'globem'].forEach(s => {
|
| 1266 |
+
const el = document.getElementById(`probing-${s}`);
|
| 1267 |
+
if (el && el.data) Plotly.Plots.resize(el);
|
| 1268 |
+
});
|
| 1269 |
+
}
|
| 1270 |
+
if (initializedCharts.has('entropy')) {
|
| 1271 |
+
for (let i = 0; i < 6; i++) {
|
| 1272 |
+
const el = document.getElementById(`entropy-model-${i}`);
|
| 1273 |
+
if (el && el.data) Plotly.Plots.resize(el);
|
| 1274 |
}
|
| 1275 |
+
}
|
| 1276 |
+
if (initializedCharts.has('error')) {
|
| 1277 |
+
const el = document.getElementById('error-chart');
|
| 1278 |
+
if (el && el.data) Plotly.Plots.resize(el);
|
| 1279 |
+
}
|
| 1280 |
+
}, 250);
|
| 1281 |
+
|
| 1282 |
+
window.addEventListener('resize', () => {
|
| 1283 |
+
clearTimeout(resizeTimeout);
|
| 1284 |
+
resizeTimeout = setTimeout(resizeHandler, 250);
|
| 1285 |
});
|
| 1286 |
+
|
| 1287 |
+
// ============================================================================
|
| 1288 |
+
// HOVER HIGHLIGHT EFFECTS - Optimized with batched updates
|
| 1289 |
+
// ============================================================================
|
| 1290 |
+
function addHoverHighlight(chartId) {
|
| 1291 |
+
const chart = document.getElementById(chartId);
|
| 1292 |
+
if (!chart || !chart.on) return;
|
| 1293 |
+
|
| 1294 |
+
let lastHoveredTrace = null;
|
| 1295 |
+
let lastHoveredPoint = null;
|
| 1296 |
+
let isAnimating = false;
|
| 1297 |
+
|
| 1298 |
+
// Throttled hover handler to prevent excessive updates
|
| 1299 |
+
const handleHover = throttle(function (data) {
|
| 1300 |
+
if (!data || !data.points || !data.points[0]) return;
|
| 1301 |
+
|
| 1302 |
+
const point = data.points[0];
|
| 1303 |
+
const traceIndex = point.curveNumber;
|
| 1304 |
+
const pointIndex = point.pointNumber;
|
| 1305 |
+
|
| 1306 |
+
// Skip if same point or currently animating
|
| 1307 |
+
if ((traceIndex === lastHoveredTrace && pointIndex === lastHoveredPoint) || isAnimating) return;
|
| 1308 |
+
|
| 1309 |
+
lastHoveredTrace = traceIndex;
|
| 1310 |
+
lastHoveredPoint = pointIndex;
|
| 1311 |
+
isAnimating = true;
|
| 1312 |
+
|
| 1313 |
+
// Build batch update arrays
|
| 1314 |
+
const opacities = [];
|
| 1315 |
+
const markerSizes = [];
|
| 1316 |
+
const lineWidths = [];
|
| 1317 |
+
const traceIndices = [];
|
| 1318 |
+
|
| 1319 |
+
const numTraces = chart.data?.length || 0;
|
| 1320 |
+
|
| 1321 |
+
for (let i = 0; i < numTraces; i++) {
|
| 1322 |
+
const trace = chart.data[i];
|
| 1323 |
+
if (!trace) continue;
|
| 1324 |
+
|
| 1325 |
+
// Skip fill traces (error bands)
|
| 1326 |
+
if (trace.fill === 'toself') continue;
|
| 1327 |
+
|
| 1328 |
+
traceIndices.push(i);
|
| 1329 |
+
|
| 1330 |
+
if (i === traceIndex) {
|
| 1331 |
+
opacities.push(1);
|
| 1332 |
+
lineWidths.push(4);
|
| 1333 |
+
const numPoints = trace.x?.length || 0;
|
| 1334 |
+
const sizes = Array(numPoints).fill(6);
|
| 1335 |
+
if (pointIndex < numPoints) sizes[pointIndex] = 12;
|
| 1336 |
+
markerSizes.push(sizes);
|
| 1337 |
+
} else {
|
| 1338 |
+
opacities.push(0.4);
|
| 1339 |
+
lineWidths.push(2);
|
| 1340 |
+
const numPoints = trace.x?.length || 0;
|
| 1341 |
+
markerSizes.push(Array(numPoints).fill(6));
|
| 1342 |
+
}
|
| 1343 |
+
}
|
| 1344 |
+
|
| 1345 |
+
// Single batched restyle call
|
| 1346 |
+
requestAnimationFrame(() => {
|
| 1347 |
+
if (traceIndices.length > 0) {
|
| 1348 |
+
Plotly.restyle(chartId, {
|
| 1349 |
+
'opacity': opacities,
|
| 1350 |
+
'marker.size': markerSizes,
|
| 1351 |
+
'line.width': lineWidths
|
| 1352 |
+
}, traceIndices).then(() => {
|
| 1353 |
+
isAnimating = false;
|
| 1354 |
+
}).catch(() => {
|
| 1355 |
+
isAnimating = false;
|
| 1356 |
+
});
|
| 1357 |
+
} else {
|
| 1358 |
+
isAnimating = false;
|
| 1359 |
+
}
|
| 1360 |
+
});
|
| 1361 |
+
}, 50); // Throttle to max 20 updates per second
|
| 1362 |
+
|
| 1363 |
+
chart.on('plotly_hover', handleHover);
|
| 1364 |
+
|
| 1365 |
+
chart.on('plotly_unhover', function () {
|
| 1366 |
+
lastHoveredTrace = null;
|
| 1367 |
+
lastHoveredPoint = null;
|
| 1368 |
+
|
| 1369 |
+
const numTraces = chart.data?.length || 0;
|
| 1370 |
+
if (numTraces === 0) return;
|
| 1371 |
+
|
| 1372 |
+
// Build reset arrays
|
| 1373 |
+
const opacities = [];
|
| 1374 |
+
const markerSizes = [];
|
| 1375 |
+
const lineWidths = [];
|
| 1376 |
+
const traceIndices = [];
|
| 1377 |
+
|
| 1378 |
+
for (let i = 0; i < numTraces; i++) {
|
| 1379 |
+
const trace = chart.data[i];
|
| 1380 |
+
if (!trace) continue;
|
| 1381 |
+
|
| 1382 |
+
// Skip fill traces
|
| 1383 |
+
if (trace.fill === 'toself') continue;
|
| 1384 |
+
|
| 1385 |
+
traceIndices.push(i);
|
| 1386 |
+
opacities.push(1);
|
| 1387 |
+
lineWidths.push(2);
|
| 1388 |
+
const numPoints = trace.x?.length || 0;
|
| 1389 |
+
markerSizes.push(Array(numPoints).fill(6));
|
| 1390 |
+
}
|
| 1391 |
+
|
| 1392 |
+
// Single batched reset call
|
| 1393 |
+
if (traceIndices.length > 0) {
|
| 1394 |
+
requestAnimationFrame(() => {
|
| 1395 |
+
Plotly.restyle(chartId, {
|
| 1396 |
+
'opacity': opacities,
|
| 1397 |
+
'marker.size': markerSizes,
|
| 1398 |
+
'line.width': lineWidths
|
| 1399 |
+
}, traceIndices);
|
| 1400 |
+
});
|
| 1401 |
+
}
|
| 1402 |
+
});
|
| 1403 |
+
}
|
| 1404 |
+
|
| 1405 |
+
// Apply hover effects when charts are initialized (called from init functions)
|
| 1406 |
+
function applyHoverEffectsForSection(sectionId) {
|
| 1407 |
+
requestAnimationFrame(() => {
|
| 1408 |
+
switch (sectionId) {
|
| 1409 |
+
case 'scaling':
|
| 1410 |
+
['mimic', '10k', 'globem'].forEach(s => addHoverHighlight(`scaling-${s}`));
|
| 1411 |
+
break;
|
| 1412 |
+
case 'probing':
|
| 1413 |
+
['mimic', '10k', 'globem'].forEach(s => addHoverHighlight(`probing-${s}`));
|
| 1414 |
+
break;
|
| 1415 |
+
case 'entropy':
|
| 1416 |
+
for (let i = 0; i < 6; i++) addHoverHighlight(`entropy-model-${i}`);
|
| 1417 |
+
break;
|
| 1418 |
+
}
|
| 1419 |
+
});
|
| 1420 |
+
}
|
data.js
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
index.html
CHANGED
|
@@ -10,7 +10,38 @@
|
|
| 10 |
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
|
| 11 |
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap" rel="stylesheet">
|
| 12 |
<script src="https://cdn.plot.ly/plotly-2.27.0.min.js"></script>
|
|
|
|
|
|
|
|
|
|
| 13 |
<link rel="stylesheet" href="styles.css">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
</head>
|
| 15 |
|
| 16 |
<body>
|
|
@@ -55,6 +86,7 @@
|
|
| 55 |
<button class="dim-btn" data-dim="token">📊 Tokens</button>
|
| 56 |
<button class="dim-btn" data-dim="cost">💰 Cost</button>
|
| 57 |
</div>
|
|
|
|
| 58 |
<div class="charts-grid three-col">
|
| 59 |
<div class="chart-card">
|
| 60 |
<h3>MIMIC</h3>
|
|
@@ -122,7 +154,46 @@
|
|
| 122 |
</div>
|
| 123 |
</section>
|
| 124 |
|
| 125 |
-
<!-- 4.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
<section id="error" class="section visible">
|
| 127 |
<div class="section-header">
|
| 128 |
<h2>⚠️ Error Analysis</h2>
|
|
@@ -130,33 +201,30 @@
|
|
| 130 |
</div>
|
| 131 |
<div class="charts-grid single">
|
| 132 |
<div class="chart-card wide">
|
| 133 |
-
<div id="error-chart" class="chart-container"></div>
|
| 134 |
</div>
|
| 135 |
</div>
|
| 136 |
</section>
|
| 137 |
|
| 138 |
-
<!--
|
| 139 |
<section id="probing" class="section visible">
|
| 140 |
<div class="section-header">
|
| 141 |
<h2>🔍 Probing Results</h2>
|
| 142 |
<p>Analyze the average log probability of FINISH messages across conversation turns and progress.</p>
|
| 143 |
</div>
|
| 144 |
-
<div class="
|
| 145 |
-
<button class="dim-btn probing-dim active" data-mode="byTurn">📊 By Turn</button>
|
| 146 |
-
<button class="dim-btn probing-dim" data-mode="byProgress">📈 By Progress (%)</button>
|
| 147 |
-
</div>
|
| 148 |
<div class="charts-grid three-col">
|
| 149 |
<div class="chart-card">
|
| 150 |
<h3>MIMIC</h3>
|
| 151 |
-
<div id="probing-mimic" class="chart-container"></div>
|
| 152 |
</div>
|
| 153 |
<div class="chart-card">
|
| 154 |
<h3>GLOBEM</h3>
|
| 155 |
-
<div id="probing-globem" class="chart-container"></div>
|
| 156 |
</div>
|
| 157 |
<div class="chart-card">
|
| 158 |
<h3>10-K</h3>
|
| 159 |
-
<div id="probing-10k" class="chart-container"></div>
|
| 160 |
</div>
|
| 161 |
</div>
|
| 162 |
</section>
|
|
@@ -167,8 +235,7 @@
|
|
| 167 |
<p>DDR-Bench © 2026 | Deep Data Research Agent Benchmark</p>
|
| 168 |
</footer>
|
| 169 |
|
| 170 |
-
|
| 171 |
-
<script src="charts.js"></script>
|
| 172 |
</body>
|
| 173 |
|
| 174 |
</html>
|
|
|
|
| 10 |
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
|
| 11 |
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap" rel="stylesheet">
|
| 12 |
<script src="https://cdn.plot.ly/plotly-2.27.0.min.js"></script>
|
| 13 |
+
<script src="data.js" defer></script>
|
| 14 |
+
<script src="entropy_data.js" defer></script>
|
| 15 |
+
<script src="charts.js" defer></script>
|
| 16 |
<link rel="stylesheet" href="styles.css">
|
| 17 |
+
<style>
|
| 18 |
+
/* Inline critical CSS for chart loading states */
|
| 19 |
+
.chart-loading {
|
| 20 |
+
display: flex;
|
| 21 |
+
align-items: center;
|
| 22 |
+
justify-content: center;
|
| 23 |
+
min-height: 300px;
|
| 24 |
+
color: #86868b;
|
| 25 |
+
font-size: 14px;
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
.chart-loading::after {
|
| 29 |
+
content: 'Loading chart...';
|
| 30 |
+
animation: pulse 1.5s ease-in-out infinite;
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
@keyframes pulse {
|
| 34 |
+
|
| 35 |
+
0%,
|
| 36 |
+
100% {
|
| 37 |
+
opacity: 0.4;
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
50% {
|
| 41 |
+
opacity: 1;
|
| 42 |
+
}
|
| 43 |
+
}
|
| 44 |
+
</style>
|
| 45 |
</head>
|
| 46 |
|
| 47 |
<body>
|
|
|
|
| 86 |
<button class="dim-btn" data-dim="token">📊 Tokens</button>
|
| 87 |
<button class="dim-btn" data-dim="cost">💰 Cost</button>
|
| 88 |
</div>
|
| 89 |
+
<div id="scaling-legend" class="shared-legend"></div>
|
| 90 |
<div class="charts-grid three-col">
|
| 91 |
<div class="chart-card">
|
| 92 |
<h3>MIMIC</h3>
|
|
|
|
| 154 |
</div>
|
| 155 |
</section>
|
| 156 |
|
| 157 |
+
<!-- 4. Entropy Analysis Section -->
|
| 158 |
+
<section id="entropy" class="section visible">
|
| 159 |
+
<div class="section-header">
|
| 160 |
+
<h2>🔬 Entropy Analysis</h2>
|
| 161 |
+
<p>Scatter plot showing Access Entropy vs Coverage by model. Opacity represents accuracy. Higher entropy
|
| 162 |
+
= more uniform access; Higher coverage = more fields explored.</p>
|
| 163 |
+
</div>
|
| 164 |
+
<div class="dimension-toggle">
|
| 165 |
+
<button class="toggle-btn active" data-entropy-scenario="10k">10-K</button>
|
| 166 |
+
<button class="toggle-btn" data-entropy-scenario="mimic">MIMIC</button>
|
| 167 |
+
</div>
|
| 168 |
+
<div class="charts-grid three-col">
|
| 169 |
+
<div class="chart-card">
|
| 170 |
+
<h3 id="entropy-model-0-title">GPT-5.2</h3>
|
| 171 |
+
<div id="entropy-model-0" class="chart-container-tall"></div>
|
| 172 |
+
</div>
|
| 173 |
+
<div class="chart-card">
|
| 174 |
+
<h3 id="entropy-model-1-title">Claude-4.5-Sonnet</h3>
|
| 175 |
+
<div id="entropy-model-1" class="chart-container-tall"></div>
|
| 176 |
+
</div>
|
| 177 |
+
<div class="chart-card">
|
| 178 |
+
<h3 id="entropy-model-2-title">Gemini-3-Flash</h3>
|
| 179 |
+
<div id="entropy-model-2" class="chart-container-tall"></div>
|
| 180 |
+
</div>
|
| 181 |
+
<div class="chart-card">
|
| 182 |
+
<h3 id="entropy-model-3-title">GLM-4.6</h3>
|
| 183 |
+
<div id="entropy-model-3" class="chart-container-tall"></div>
|
| 184 |
+
</div>
|
| 185 |
+
<div class="chart-card">
|
| 186 |
+
<h3 id="entropy-model-4-title">Qwen3-Next-80B-A3B</h3>
|
| 187 |
+
<div id="entropy-model-4" class="chart-container-tall"></div>
|
| 188 |
+
</div>
|
| 189 |
+
<div class="chart-card">
|
| 190 |
+
<h3 id="entropy-model-5-title">DeepSeek-V3.2</h3>
|
| 191 |
+
<div id="entropy-model-5" class="chart-container-tall"></div>
|
| 192 |
+
</div>
|
| 193 |
+
</div>
|
| 194 |
+
</section>
|
| 195 |
+
|
| 196 |
+
<!-- 5. Error Analysis Section -->
|
| 197 |
<section id="error" class="section visible">
|
| 198 |
<div class="section-header">
|
| 199 |
<h2>⚠️ Error Analysis</h2>
|
|
|
|
| 201 |
</div>
|
| 202 |
<div class="charts-grid single">
|
| 203 |
<div class="chart-card wide">
|
| 204 |
+
<div id="error-chart" class="chart-container-double"></div>
|
| 205 |
</div>
|
| 206 |
</div>
|
| 207 |
</section>
|
| 208 |
|
| 209 |
+
<!-- 6. Probing Results Section -->
|
| 210 |
<section id="probing" class="section visible">
|
| 211 |
<div class="section-header">
|
| 212 |
<h2>🔍 Probing Results</h2>
|
| 213 |
<p>Analyze the average log probability of FINISH messages across conversation turns and progress.</p>
|
| 214 |
</div>
|
| 215 |
+
<div id="probing-legend" class="shared-legend"></div>
|
|
|
|
|
|
|
|
|
|
| 216 |
<div class="charts-grid three-col">
|
| 217 |
<div class="chart-card">
|
| 218 |
<h3>MIMIC</h3>
|
| 219 |
+
<div id="probing-mimic" class="chart-container-tall"></div>
|
| 220 |
</div>
|
| 221 |
<div class="chart-card">
|
| 222 |
<h3>GLOBEM</h3>
|
| 223 |
+
<div id="probing-globem" class="chart-container-tall"></div>
|
| 224 |
</div>
|
| 225 |
<div class="chart-card">
|
| 226 |
<h3>10-K</h3>
|
| 227 |
+
<div id="probing-10k" class="chart-container-tall"></div>
|
| 228 |
</div>
|
| 229 |
</div>
|
| 230 |
</section>
|
|
|
|
| 235 |
<p>DDR-Bench © 2026 | Deep Data Research Agent Benchmark</p>
|
| 236 |
</footer>
|
| 237 |
|
| 238 |
+
<!-- Scripts loaded via defer in head for better parallelization -->
|
|
|
|
| 239 |
</body>
|
| 240 |
|
| 241 |
</html>
|
styles.css
CHANGED
|
@@ -1,21 +1,22 @@
|
|
| 1 |
-
/*
|
| 2 |
:root {
|
| 3 |
-
--primary: #
|
| 4 |
-
|
| 5 |
-
--primary-
|
| 6 |
-
--
|
| 7 |
-
|
| 8 |
-
--bg-
|
| 9 |
-
--
|
| 10 |
-
|
| 11 |
-
--text-
|
| 12 |
-
|
| 13 |
-
--
|
| 14 |
-
--
|
| 15 |
-
|
| 16 |
-
--
|
| 17 |
-
--
|
| 18 |
-
|
|
|
|
| 19 |
}
|
| 20 |
|
| 21 |
/* Reset & Base */
|
|
@@ -27,90 +28,71 @@
|
|
| 27 |
padding: 0;
|
| 28 |
}
|
| 29 |
|
| 30 |
-
html {
|
| 31 |
-
scroll-behavior: smooth;
|
| 32 |
-
}
|
| 33 |
-
|
| 34 |
body {
|
| 35 |
-
font-family:
|
| 36 |
-
background-color: var(--bg-
|
| 37 |
color: var(--text-primary);
|
| 38 |
-
line-height: 1.
|
|
|
|
| 39 |
min-height: 100vh;
|
|
|
|
| 40 |
}
|
| 41 |
|
| 42 |
/* Hero Section */
|
| 43 |
.hero {
|
| 44 |
-
|
| 45 |
-
padding: 2rem 2rem 1.5rem;
|
| 46 |
text-align: center;
|
| 47 |
-
|
| 48 |
-
overflow: hidden;
|
| 49 |
-
}
|
| 50 |
-
|
| 51 |
-
.hero::before {
|
| 52 |
-
content: '';
|
| 53 |
-
position: absolute;
|
| 54 |
-
top: 0;
|
| 55 |
-
left: 0;
|
| 56 |
-
right: 0;
|
| 57 |
-
bottom: 0;
|
| 58 |
-
background:
|
| 59 |
-
radial-gradient(circle at 20% 50%, rgba(99, 102, 241, 0.15) 0%, transparent 50%),
|
| 60 |
-
radial-gradient(circle at 80% 50%, rgba(139, 92, 246, 0.1) 0%, transparent 50%);
|
| 61 |
-
pointer-events: none;
|
| 62 |
}
|
| 63 |
|
| 64 |
.hero-content {
|
| 65 |
-
max-width:
|
| 66 |
margin: 0 auto;
|
| 67 |
-
position: relative;
|
| 68 |
-
z-index: 1;
|
| 69 |
}
|
| 70 |
|
| 71 |
.badge {
|
| 72 |
display: inline-block;
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
margin-bottom: 0.5rem;
|
| 80 |
-
border: 1px solid rgba(99, 102, 241, 0.3);
|
| 81 |
}
|
| 82 |
|
| 83 |
.hero h1 {
|
| 84 |
-
font-size:
|
|
|
|
| 85 |
font-weight: 700;
|
| 86 |
-
|
| 87 |
-
-
|
| 88 |
-
|
| 89 |
-
background-clip: text;
|
| 90 |
-
margin-bottom: 0.4rem;
|
| 91 |
-
letter-spacing: -0.02em;
|
| 92 |
}
|
| 93 |
|
| 94 |
.subtitle {
|
| 95 |
-
font-size:
|
| 96 |
-
|
| 97 |
-
margin-bottom: 0.5rem;
|
| 98 |
font-weight: 400;
|
|
|
|
|
|
|
|
|
|
| 99 |
}
|
| 100 |
|
| 101 |
.description {
|
| 102 |
-
font-size:
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
| 104 |
max-width: 700px;
|
| 105 |
-
margin: 0 auto
|
| 106 |
-
line-height: 1.5;
|
| 107 |
}
|
| 108 |
|
| 109 |
.stats-row {
|
| 110 |
display: flex;
|
| 111 |
justify-content: center;
|
| 112 |
-
gap:
|
| 113 |
-
margin-top:
|
| 114 |
}
|
| 115 |
|
| 116 |
.stat-item {
|
|
@@ -119,90 +101,134 @@ body {
|
|
| 119 |
|
| 120 |
.stat-value {
|
| 121 |
display: block;
|
| 122 |
-
font-size:
|
| 123 |
-
font-weight:
|
| 124 |
-
color: var(--primary
|
| 125 |
}
|
| 126 |
|
| 127 |
.stat-label {
|
| 128 |
-
font-size:
|
| 129 |
-
color: var(--text-
|
|
|
|
| 130 |
}
|
| 131 |
|
| 132 |
/* Main Content */
|
| 133 |
.content {
|
| 134 |
max-width: 1800px;
|
|
|
|
| 135 |
margin: 0 auto;
|
| 136 |
-
padding:
|
| 137 |
}
|
| 138 |
|
| 139 |
-
/* Sections
|
| 140 |
.section {
|
| 141 |
-
|
| 142 |
-
margin-bottom: 2rem;
|
| 143 |
-
padding-bottom: 1rem;
|
| 144 |
-
border-bottom: 1px solid var(--border);
|
| 145 |
-
}
|
| 146 |
-
|
| 147 |
-
.section:last-child {
|
| 148 |
-
border-bottom: none;
|
| 149 |
-
margin-bottom: 0;
|
| 150 |
}
|
| 151 |
|
| 152 |
.section-header {
|
| 153 |
-
margin-bottom:
|
| 154 |
text-align: center;
|
| 155 |
}
|
| 156 |
|
| 157 |
.section-header h2 {
|
| 158 |
-
font-size:
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
|
|
|
| 162 |
}
|
| 163 |
|
| 164 |
.section-header p {
|
| 165 |
-
|
| 166 |
-
|
| 167 |
}
|
| 168 |
|
| 169 |
-
/*
|
| 170 |
.dimension-toggle {
|
| 171 |
display: flex;
|
| 172 |
justify-content: center;
|
| 173 |
-
gap:
|
| 174 |
-
margin-bottom:
|
| 175 |
}
|
| 176 |
|
| 177 |
.dim-btn {
|
| 178 |
-
padding:
|
| 179 |
-
background:
|
| 180 |
-
border:
|
| 181 |
-
border-radius:
|
| 182 |
-
color: var(--text-
|
| 183 |
-
font-size:
|
| 184 |
-
font-weight:
|
| 185 |
cursor: pointer;
|
| 186 |
transition: all 0.2s ease;
|
| 187 |
font-family: inherit;
|
| 188 |
}
|
| 189 |
|
| 190 |
.dim-btn:hover {
|
| 191 |
-
background:
|
| 192 |
-
color: var(--text-primary);
|
| 193 |
}
|
| 194 |
|
| 195 |
.dim-btn.active {
|
| 196 |
-
background: var(--
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
color: white;
|
| 198 |
-
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
}
|
| 201 |
|
| 202 |
/* Charts Grid */
|
| 203 |
.charts-grid {
|
| 204 |
display: grid;
|
| 205 |
-
gap:
|
|
|
|
| 206 |
}
|
| 207 |
|
| 208 |
.charts-grid.three-col {
|
|
@@ -211,127 +237,98 @@ body {
|
|
| 211 |
|
| 212 |
.charts-grid.single {
|
| 213 |
grid-template-columns: 1fr;
|
| 214 |
-
max-width:
|
| 215 |
margin: 0 auto;
|
| 216 |
}
|
| 217 |
|
| 218 |
-
@media (max-width: 1200px) {
|
| 219 |
-
.charts-grid.three-col {
|
| 220 |
-
grid-template-columns: repeat(2, 1fr);
|
| 221 |
-
}
|
| 222 |
-
}
|
| 223 |
-
|
| 224 |
-
@media (max-width: 768px) {
|
| 225 |
-
.charts-grid.three-col {
|
| 226 |
-
grid-template-columns: 1fr;
|
| 227 |
-
}
|
| 228 |
-
}
|
| 229 |
-
|
| 230 |
/* Chart Card */
|
| 231 |
.chart-card {
|
| 232 |
background: var(--bg-card);
|
| 233 |
-
border-radius:
|
| 234 |
-
padding:
|
| 235 |
-
|
| 236 |
-
box-shadow
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
}
|
| 238 |
|
| 239 |
.chart-card h3 {
|
| 240 |
-
font-size:
|
| 241 |
font-weight: 600;
|
| 242 |
-
color: var(--text-
|
| 243 |
-
margin-bottom:
|
| 244 |
text-align: center;
|
| 245 |
-
|
| 246 |
-
|
| 247 |
}
|
| 248 |
|
| 249 |
.chart-card.wide {
|
| 250 |
-
padding:
|
| 251 |
}
|
| 252 |
|
| 253 |
-
/* Chart Containers
|
| 254 |
.chart-container {
|
| 255 |
-
height:
|
|
|
|
| 256 |
width: 100%;
|
| 257 |
-
|
| 258 |
}
|
| 259 |
|
| 260 |
.chart-container-tall {
|
| 261 |
-
height:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
width: 100%;
|
| 263 |
-
min-height: 500px;
|
| 264 |
}
|
| 265 |
|
| 266 |
/* Footer */
|
| 267 |
.footer {
|
| 268 |
text-align: center;
|
| 269 |
-
padding: 1rem;
|
| 270 |
-
color: var(--text-
|
| 271 |
-
font-size:
|
|
|
|
| 272 |
border-top: 1px solid var(--border);
|
| 273 |
-
margin-top: 1rem;
|
| 274 |
}
|
| 275 |
|
| 276 |
/* Responsive */
|
| 277 |
-
@media (max-width:
|
| 278 |
-
.
|
| 279 |
-
|
| 280 |
}
|
|
|
|
| 281 |
|
|
|
|
| 282 |
.hero h1 {
|
| 283 |
-
font-size:
|
| 284 |
}
|
| 285 |
|
| 286 |
.subtitle {
|
| 287 |
-
font-size:
|
| 288 |
-
}
|
| 289 |
-
|
| 290 |
-
.stats-row {
|
| 291 |
-
gap: 1rem;
|
| 292 |
-
}
|
| 293 |
-
|
| 294 |
-
.stat-value {
|
| 295 |
-
font-size: 1.25rem;
|
| 296 |
-
}
|
| 297 |
-
|
| 298 |
-
.content {
|
| 299 |
-
padding: 0.75rem;
|
| 300 |
}
|
| 301 |
|
| 302 |
-
.
|
| 303 |
-
|
| 304 |
-
}
|
| 305 |
-
|
| 306 |
-
.dim-btn {
|
| 307 |
-
padding: 0.35rem 0.7rem;
|
| 308 |
-
font-size: 0.7rem;
|
| 309 |
}
|
| 310 |
|
| 311 |
.chart-container {
|
| 312 |
-
height:
|
| 313 |
}
|
| 314 |
|
| 315 |
.chart-container-tall {
|
| 316 |
-
height:
|
| 317 |
}
|
| 318 |
}
|
| 319 |
|
| 320 |
-
/* Plotly
|
| 321 |
.js-plotly-plot .plotly .modebar {
|
| 322 |
-
|
| 323 |
-
}
|
| 324 |
-
|
| 325 |
-
.js-plotly-plot .plotly .modebar-btn path {
|
| 326 |
-
fill: var(--text-secondary) !important;
|
| 327 |
-
}
|
| 328 |
-
|
| 329 |
-
.js-plotly-plot .plotly .modebar-btn:hover path {
|
| 330 |
-
fill: var(--text-primary) !important;
|
| 331 |
-
}
|
| 332 |
-
|
| 333 |
-
/* Ensure Plotly charts don't overflow */
|
| 334 |
-
.js-plotly-plot {
|
| 335 |
-
width: 100% !important;
|
| 336 |
-
height: 100% !important;
|
| 337 |
}
|
|
|
|
| 1 |
+
/* Apple Style Minimalist Theme */
|
| 2 |
:root {
|
| 3 |
+
--primary: #0071e3;
|
| 4 |
+
/* Apple Blue */
|
| 5 |
+
--primary-hover: #0077ed;
|
| 6 |
+
--bg-body: #f5f5f7;
|
| 7 |
+
/* Light grey background */
|
| 8 |
+
--bg-card: #ffffff;
|
| 9 |
+
--text-primary: #1d1d1f;
|
| 10 |
+
/* Apple Black */
|
| 11 |
+
--text-secondary: #515154;
|
| 12 |
+
/* Darker grey */
|
| 13 |
+
--border: #d2d2d7;
|
| 14 |
+
--shadow-card: 0 8px 30px rgba(0, 0, 0, 0.08);
|
| 15 |
+
/* Stronger shadow */
|
| 16 |
+
--radius-card: 20px;
|
| 17 |
+
--radius-btn: 980px;
|
| 18 |
+
/* Capsule */
|
| 19 |
+
--font-stack: "SF Pro Text", "SF Pro Icons", "Helvetica Neue", "Helvetica", "Arial", sans-serif;
|
| 20 |
}
|
| 21 |
|
| 22 |
/* Reset & Base */
|
|
|
|
| 28 |
padding: 0;
|
| 29 |
}
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
body {
|
| 32 |
+
font-family: var(--font-stack);
|
| 33 |
+
background-color: var(--bg-body);
|
| 34 |
color: var(--text-primary);
|
| 35 |
+
line-height: 1.47059;
|
| 36 |
+
letter-spacing: -0.022em;
|
| 37 |
min-height: 100vh;
|
| 38 |
+
-webkit-font-smoothing: antialiased;
|
| 39 |
}
|
| 40 |
|
| 41 |
/* Hero Section */
|
| 42 |
.hero {
|
| 43 |
+
padding: 4rem 2rem 2rem;
|
|
|
|
| 44 |
text-align: center;
|
| 45 |
+
background: var(--bg-body);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
}
|
| 47 |
|
| 48 |
.hero-content {
|
| 49 |
+
max-width: 980px;
|
| 50 |
margin: 0 auto;
|
|
|
|
|
|
|
| 51 |
}
|
| 52 |
|
| 53 |
.badge {
|
| 54 |
display: inline-block;
|
| 55 |
+
color: var(--primary);
|
| 56 |
+
font-size: 12px;
|
| 57 |
+
font-weight: 600;
|
| 58 |
+
margin-bottom: 0.8rem;
|
| 59 |
+
letter-spacing: 0.05em;
|
| 60 |
+
text-transform: uppercase;
|
|
|
|
|
|
|
| 61 |
}
|
| 62 |
|
| 63 |
.hero h1 {
|
| 64 |
+
font-size: 48px;
|
| 65 |
+
line-height: 1.08349;
|
| 66 |
font-weight: 700;
|
| 67 |
+
letter-spacing: -0.003em;
|
| 68 |
+
margin-bottom: 0.5rem;
|
| 69 |
+
color: var(--text-primary);
|
|
|
|
|
|
|
|
|
|
| 70 |
}
|
| 71 |
|
| 72 |
.subtitle {
|
| 73 |
+
font-size: 24px;
|
| 74 |
+
line-height: 1.16667;
|
|
|
|
| 75 |
font-weight: 400;
|
| 76 |
+
letter-spacing: 0.009em;
|
| 77 |
+
color: var(--text-primary);
|
| 78 |
+
margin-bottom: 1rem;
|
| 79 |
}
|
| 80 |
|
| 81 |
.description {
|
| 82 |
+
font-size: 17px;
|
| 83 |
+
line-height: 1.47059;
|
| 84 |
+
font-weight: 400;
|
| 85 |
+
letter-spacing: -0.022em;
|
| 86 |
+
color: var(--text-secondary);
|
| 87 |
max-width: 700px;
|
| 88 |
+
margin: 0 auto 2rem;
|
|
|
|
| 89 |
}
|
| 90 |
|
| 91 |
.stats-row {
|
| 92 |
display: flex;
|
| 93 |
justify-content: center;
|
| 94 |
+
gap: 3rem;
|
| 95 |
+
margin-top: 2rem;
|
| 96 |
}
|
| 97 |
|
| 98 |
.stat-item {
|
|
|
|
| 101 |
|
| 102 |
.stat-value {
|
| 103 |
display: block;
|
| 104 |
+
font-size: 28px;
|
| 105 |
+
font-weight: 600;
|
| 106 |
+
color: var(--text-primary);
|
| 107 |
}
|
| 108 |
|
| 109 |
.stat-label {
|
| 110 |
+
font-size: 13px;
|
| 111 |
+
color: var(--text-secondary);
|
| 112 |
+
font-weight: 500;
|
| 113 |
}
|
| 114 |
|
| 115 |
/* Main Content */
|
| 116 |
.content {
|
| 117 |
max-width: 1800px;
|
| 118 |
+
/* Maximize width for charts */
|
| 119 |
margin: 0 auto;
|
| 120 |
+
padding: 2rem;
|
| 121 |
}
|
| 122 |
|
| 123 |
+
/* Sections */
|
| 124 |
.section {
|
| 125 |
+
margin-bottom: 4rem;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
}
|
| 127 |
|
| 128 |
.section-header {
|
| 129 |
+
margin-bottom: 2rem;
|
| 130 |
text-align: center;
|
| 131 |
}
|
| 132 |
|
| 133 |
.section-header h2 {
|
| 134 |
+
font-size: 32px;
|
| 135 |
+
line-height: 1.125;
|
| 136 |
+
font-weight: 700;
|
| 137 |
+
letter-spacing: 0.004em;
|
| 138 |
+
margin-bottom: 0.5rem;
|
| 139 |
}
|
| 140 |
|
| 141 |
.section-header p {
|
| 142 |
+
font-size: 17px;
|
| 143 |
+
color: var(--text-secondary);
|
| 144 |
}
|
| 145 |
|
| 146 |
+
/* Toggle Buttons */
|
| 147 |
.dimension-toggle {
|
| 148 |
display: flex;
|
| 149 |
justify-content: center;
|
| 150 |
+
gap: 1rem;
|
| 151 |
+
margin-bottom: 1.5rem;
|
| 152 |
}
|
| 153 |
|
| 154 |
.dim-btn {
|
| 155 |
+
padding: 8px 16px;
|
| 156 |
+
background: rgba(0, 0, 0, 0.05);
|
| 157 |
+
border: none;
|
| 158 |
+
border-radius: var(--radius-btn);
|
| 159 |
+
color: var(--text-primary);
|
| 160 |
+
font-size: 14px;
|
| 161 |
+
font-weight: 400;
|
| 162 |
cursor: pointer;
|
| 163 |
transition: all 0.2s ease;
|
| 164 |
font-family: inherit;
|
| 165 |
}
|
| 166 |
|
| 167 |
.dim-btn:hover {
|
| 168 |
+
background: rgba(0, 0, 0, 0.1);
|
|
|
|
| 169 |
}
|
| 170 |
|
| 171 |
.dim-btn.active {
|
| 172 |
+
background: var(--text-primary);
|
| 173 |
+
/* Black active state like Apple */
|
| 174 |
+
color: white;
|
| 175 |
+
}
|
| 176 |
+
|
| 177 |
+
.toggle-btn {
|
| 178 |
+
padding: 10px 20px;
|
| 179 |
+
background: rgba(0, 0, 0, 0.05);
|
| 180 |
+
border: none;
|
| 181 |
+
border-radius: var(--radius-btn);
|
| 182 |
+
color: var(--text-primary);
|
| 183 |
+
font-size: 14px;
|
| 184 |
+
font-weight: 500;
|
| 185 |
+
cursor: pointer;
|
| 186 |
+
transition: all 0.3s ease;
|
| 187 |
+
font-family: inherit;
|
| 188 |
+
}
|
| 189 |
+
|
| 190 |
+
.toggle-btn:hover {
|
| 191 |
+
background: rgba(0, 0, 0, 0.12);
|
| 192 |
+
}
|
| 193 |
+
|
| 194 |
+
.toggle-btn.active {
|
| 195 |
+
background: var(--text-primary);
|
| 196 |
color: white;
|
| 197 |
+
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.15);
|
| 198 |
+
}
|
| 199 |
+
|
| 200 |
+
/* Shared Legend for Scaling and Probing */
|
| 201 |
+
.shared-legend {
|
| 202 |
+
display: flex;
|
| 203 |
+
justify-content: center;
|
| 204 |
+
flex-wrap: wrap;
|
| 205 |
+
gap: 1.5rem;
|
| 206 |
+
margin-bottom: 1.5rem;
|
| 207 |
+
padding: 1rem;
|
| 208 |
+
background: var(--bg-card);
|
| 209 |
+
border-radius: 12px;
|
| 210 |
+
box-shadow: var(--shadow-card);
|
| 211 |
+
}
|
| 212 |
+
|
| 213 |
+
.legend-item {
|
| 214 |
+
display: flex;
|
| 215 |
+
align-items: center;
|
| 216 |
+
gap: 0.5rem;
|
| 217 |
+
font-size: 13px;
|
| 218 |
+
color: var(--text-primary);
|
| 219 |
+
}
|
| 220 |
+
|
| 221 |
+
.legend-color {
|
| 222 |
+
width: 24px;
|
| 223 |
+
height: 3px;
|
| 224 |
+
border-radius: 2px;
|
| 225 |
}
|
| 226 |
|
| 227 |
/* Charts Grid */
|
| 228 |
.charts-grid {
|
| 229 |
display: grid;
|
| 230 |
+
gap: 16px;
|
| 231 |
+
/* Tighter gap */
|
| 232 |
}
|
| 233 |
|
| 234 |
.charts-grid.three-col {
|
|
|
|
| 237 |
|
| 238 |
.charts-grid.single {
|
| 239 |
grid-template-columns: 1fr;
|
| 240 |
+
max-width: 1000px;
|
| 241 |
margin: 0 auto;
|
| 242 |
}
|
| 243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
/* Chart Card */
|
| 245 |
.chart-card {
|
| 246 |
background: var(--bg-card);
|
| 247 |
+
border-radius: var(--radius-card);
|
| 248 |
+
padding: 24px;
|
| 249 |
+
box-shadow: var(--shadow-card);
|
| 250 |
+
transition: transform 0.3s ease, box-shadow 0.3s ease;
|
| 251 |
+
}
|
| 252 |
+
|
| 253 |
+
.chart-card:hover {
|
| 254 |
+
box-shadow: 0 8px 24px rgba(0, 0, 0, 0.08);
|
| 255 |
}
|
| 256 |
|
| 257 |
.chart-card h3 {
|
| 258 |
+
font-size: 14px;
|
| 259 |
font-weight: 600;
|
| 260 |
+
color: var(--text-secondary);
|
| 261 |
+
margin-bottom: 1rem;
|
| 262 |
text-align: center;
|
| 263 |
+
text-transform: uppercase;
|
| 264 |
+
letter-spacing: 0.05em;
|
| 265 |
}
|
| 266 |
|
| 267 |
.chart-card.wide {
|
| 268 |
+
padding: 32px;
|
| 269 |
}
|
| 270 |
|
| 271 |
+
/* Chart Containers */
|
| 272 |
.chart-container {
|
| 273 |
+
height: 300px;
|
| 274 |
+
/* Reduced height */
|
| 275 |
width: 100%;
|
| 276 |
+
transition: opacity 0.3s ease;
|
| 277 |
}
|
| 278 |
|
| 279 |
.chart-container-tall {
|
| 280 |
+
height: 450px;
|
| 281 |
+
/* Reduced height */
|
| 282 |
+
transition: opacity 0.3s ease;
|
| 283 |
+
width: 100%;
|
| 284 |
+
}
|
| 285 |
+
|
| 286 |
+
.chart-container-double {
|
| 287 |
+
height: 600px;
|
| 288 |
+
/* Double height for error analysis */
|
| 289 |
width: 100%;
|
|
|
|
| 290 |
}
|
| 291 |
|
| 292 |
/* Footer */
|
| 293 |
.footer {
|
| 294 |
text-align: center;
|
| 295 |
+
padding: 3rem 1rem;
|
| 296 |
+
color: var(--text-secondary);
|
| 297 |
+
font-size: 12px;
|
| 298 |
+
background: var(--bg-body);
|
| 299 |
border-top: 1px solid var(--border);
|
|
|
|
| 300 |
}
|
| 301 |
|
| 302 |
/* Responsive */
|
| 303 |
+
@media (max-width: 1024px) {
|
| 304 |
+
.charts-grid.three-col {
|
| 305 |
+
grid-template-columns: repeat(2, 1fr);
|
| 306 |
}
|
| 307 |
+
}
|
| 308 |
|
| 309 |
+
@media (max-width: 768px) {
|
| 310 |
.hero h1 {
|
| 311 |
+
font-size: 36px;
|
| 312 |
}
|
| 313 |
|
| 314 |
.subtitle {
|
| 315 |
+
font-size: 20px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
}
|
| 317 |
|
| 318 |
+
.charts-grid.three-col {
|
| 319 |
+
grid-template-columns: 1fr;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
}
|
| 321 |
|
| 322 |
.chart-container {
|
| 323 |
+
height: 300px;
|
| 324 |
}
|
| 325 |
|
| 326 |
.chart-container-tall {
|
| 327 |
+
height: 400px;
|
| 328 |
}
|
| 329 |
}
|
| 330 |
|
| 331 |
+
/* Plotly Overrides */
|
| 332 |
.js-plotly-plot .plotly .modebar {
|
| 333 |
+
display: none !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
}
|