doc-search / app.py
briankchan's picture
Initial commit
2afc3f4
# based on https://github.com/hwchase17/langchain-gradio-template/blob/master/app.py
import collections
import os
from queue import Queue
from time import sleep
from typing import Any, Dict, List, Optional, Tuple
import gradio as gr
from anyio.from_thread import start_blocking_portal
from langchain import PromptTemplate
from langchain.callbacks.manager import AsyncCallbackManager
from langchain.chains import LLMChain
from langchain.chat_models import ChatOpenAI, PromptLayerChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.prompts import PromptTemplate
from langchain.prompts.base import DEFAULT_FORMATTER_MAPPING
from langchain.prompts.chat import (ChatPromptTemplate,
HumanMessagePromptTemplate)
from langchain.schema import HumanMessage
from langchain.vectorstores import Chroma
from langchain.docstore.document import Document
from util import SyncStreamingLLMCallbackHandler, CustomOpenAIEmbeddings
def I(x):
"Identity function; does nothing."
return x
class PreprocessingPromptTemplate(PromptTemplate):
arg_preprocessing: Dict = {} # this is probably the wrong type
def format(self, **kwargs: Any) -> str:
"""Format the prompt with the inputs.
Args:
kwargs: Any arguments to be passed to the prompt template.
Returns:
A formatted string.
Example:
.. code-block:: python
prompt.format(variable1="foo")
"""
kwargs = self._merge_partial_and_user_variables(**kwargs)
kwargs = self._preprocess_args(kwargs)
return DEFAULT_FORMATTER_MAPPING[self.template_format](self.template, **kwargs)
def _preprocess_args(self, args: dict):
return {k: self.arg_preprocessing.get(k, I)(v) for k, v in args.items()}
def top_results_to_string(x: List[Tuple[Document, float]]):
return "\n~~~\n".join(f"Result {i} Title: {doc.metadata['title']}\nResult {i} Content: {doc.page_content}" for i, (doc, score) in enumerate(x, 1))
PROMPT = """You are a helpful AI assistant that summarizes search results for users.
---
A user has searched for the following query:
{query}
---
The search engine returned the following 5 search results:
{top_results}
---
Based on the search results, answer the user's query, and use the same language as the user's query.
Say which search result you used.
Do not use information other than the search results.
Say 'No answer found.' if there are no relevant results.
Afterwards, say how confident you are in your answer as a percentage.
"""
PROMPT_TEMPLATE = PreprocessingPromptTemplate(template=PROMPT, input_variables=['query', 'top_results'])
PROMPT_TEMPLATE.arg_preprocessing['top_results'] = top_results_to_string
# TODO give relevance value in prompt
# TODO ask gpt to say which sources it used
# TODO azure?
COLLECTION = Chroma(
embedding_function=CustomOpenAIEmbeddings(api_key=os.environ.get("OPENAI_API_KEY", None)),
persist_directory="./.chroma",
collection_name="CUHK",
)
# COLLECTION = CHROMA_CLIENT.get_collection(name='CUHK')
def load_chain(api_type):
shared_args = {
"temperature": 0,
"model_name": "gpt-3.5-turbo",
"pl_tags": ["cuhk-demo"],
"streaming": True,
}
if api_type == "OpenAI":
chat = PromptLayerChatOpenAI(
**shared_args,
api_key = os.environ.get("OPENAI_API_KEY", None),
)
elif api_type == "Azure OpenAI":
chat = PromptLayerChatOpenAI(
api_type = "azure",
api_key = os.environ.get("AZURE_OPENAI_API_KEY", None),
api_base = os.environ.get("AZURE_OPENAI_API_BASE", None),
api_version = os.environ.get("AZURE_OPENAI_API_VERSION", "2023-03-15-preview"),
engine = os.environ.get("AZURE_OPENAI_DEPLOYMENT_NAME", None),
**shared_args
)
chain = chain = LLMChain(llm=chat, prompt=PROMPT_TEMPLATE)
return chat, chain
def initialize_chain(api_type):
"Runs at app start"
chat, chain = load_chain(api_type)
return chat, chain
def change_chain(api_type, old_chain):
chat, chain = load_chain(api_type)
return chat, chain
def find_top_results(query):
results = COLLECTION.similarity_search_with_score(query, k=4) # TODO filter by device (windows, mac, android, ios)
output = "\n".join(f"1. [{d.metadata['title']}]({d.metadata['url']}) <small>(dist: {s})</small>" for d, s in results)
return results, output
def ask_gpt(chain, query, top_results): # top_results: List[Tuple[Document, float]]
q = Queue()
job_done = object()
def task():
chain.run(
query=query,
top_results=top_results,
callbacks=[SyncStreamingLLMCallbackHandler(q)],
)
q.put(job_done)
return
with start_blocking_portal() as portal:
portal.start_task_soon(task)
content = ""
while True:
next_token = q.get(True, timeout=15)
if next_token is job_done:
break
content += next_token
yield content
demo = gr.Blocks(css="""
#sidebar {
max-width: 300px;
}
""")
with demo:
with gr.Row():
# sidebar
with gr.Column(elem_id="sidebar"):
api_type = gr.Radio(
["OpenAI", "Azure OpenAI"],
value="OpenAI",
label="Server",
info="You can try changing this if responses are slow."
)
# main
with gr.Column():
# Company img
gr.HTML(r'<div style="display: flex; justify-content: center; align-items: center"><a href="https://thinkcol.com/"><img src="./file=thinkcol-logo.png" alt="ThinkCol" width="357" height="87" /></a></div>')
chat = gr.State()
chain = gr.State()
query = gr.Textbox(label="Search Query:")
top_results_data = gr.State()
top_results = gr.Markdown(label="Search Results")
response = gr.Textbox(label="AI Response")
load_event = demo.load(initialize_chain, [api_type], [chat, chain])
query_event = query.submit(find_top_results, [query], [top_results_data, top_results])
ask_event = query_event.then(ask_gpt, [chain, query, top_results_data], [response])
api_type.change(change_chain,
[api_type, chain],
[chat, chain],
cancels=[load_event, query_event, ask_event])
demo.queue()
if __name__ == "__main__":
demo.launch()