thewhole's picture
Upload 245 files
2fa4776
raw
history blame
2.58 kB
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import torch
import math
import numpy as np
from typing import NamedTuple
class BasicPointCloud(NamedTuple):
points : np.array
colors : np.array
normals : np.array
def geom_transform_points(points, transf_matrix):
P, _ = points.shape
ones = torch.ones(P, 1, dtype=points.dtype, device=points.device)
points_hom = torch.cat([points, ones], dim=1)
points_out = torch.matmul(points_hom, transf_matrix.unsqueeze(0))
denom = points_out[..., 3:] + 0.0000001
return (points_out[..., :3] / denom).squeeze(dim=0)
def getWorld2View(R, t):
Rt = np.zeros((4, 4))
Rt[:3, :3] = R.transpose()
Rt[:3, 3] = t
Rt[3, 3] = 1.0
return np.float32(Rt)
def getWorld2View_tensor(R, t):
Rt = torch.zeros((4, 4))
Rt[:3, :3] = R.transpose(0,1)
Rt[:3, 3] = t
Rt[3, 3] = 1.0
return Rt.float()
def getWorld2View2(R, t, translate=np.array([.0, .0, .0]), scale=1.0):
Rt = np.zeros((4, 4))
Rt[:3, :3] = R.transpose()
Rt[:3, 3] = t
Rt[3, 3] = 1.0
C2W = np.linalg.inv(Rt)
cam_center = C2W[:3, 3]
cam_center = (cam_center + translate) * scale
C2W[:3, 3] = cam_center
Rt = np.linalg.inv(C2W)
return np.float32(Rt)
def getWorld2View2_tensor(R, t, translate=torch.tensor([.0, .0, .0]), scale=1.0):
Rt = torch.zeros((4, 4))
Rt[:3, :3] = R.transpose(0,1)
Rt[:3, 3] = t
Rt[3, 3] = 1.0
C2W = torch.linalg.inv(Rt)
cam_center = C2W[:3, 3]
cam_center = (cam_center + translate) * scale
C2W[:3, 3] = cam_center
Rt = torch.linalg.inv(C2W)
return Rt.float()
def getProjectionMatrix(znear, zfar, fovX, fovY):
tanHalfFovY = math.tan((fovY / 2))
tanHalfFovX = math.tan((fovX / 2))
top = tanHalfFovY * znear
bottom = -top
right = tanHalfFovX * znear
left = -right
P = torch.zeros(4, 4)
z_sign = 1.0
P[0, 0] = 2.0 * znear / (right - left)
P[1, 1] = 2.0 * znear / (top - bottom)
P[0, 2] = (right + left) / (right - left)
P[1, 2] = (top + bottom) / (top - bottom)
P[3, 2] = z_sign
P[2, 2] = z_sign * zfar / (zfar - znear)
P[2, 3] = -(zfar * znear) / (zfar - znear)
return P
def fov2focal(fov, pixels):
return pixels / (2 * math.tan(fov / 2))
def focal2fov(focal, pixels):
return 2*math.atan(pixels/(2*focal))