GaussianDreamer_Demo / threestudio /models /background /neural_environment_map_background.py
thewhole's picture
Upload 245 files
2fa4776
raw
history blame
2.52 kB
import random
from dataclasses import dataclass, field
import torch
import torch.nn as nn
import torch.nn.functional as F
import threestudio
from threestudio.models.background.base import BaseBackground
from threestudio.models.networks import get_encoding, get_mlp
from threestudio.utils.ops import get_activation
from threestudio.utils.typing import *
@threestudio.register("neural-environment-map-background")
class NeuralEnvironmentMapBackground(BaseBackground):
@dataclass
class Config(BaseBackground.Config):
n_output_dims: int = 3
color_activation: str = "sigmoid"
dir_encoding_config: dict = field(
default_factory=lambda: {"otype": "SphericalHarmonics", "degree": 3}
)
mlp_network_config: dict = field(
default_factory=lambda: {
"otype": "VanillaMLP",
"activation": "ReLU",
"n_neurons": 16,
"n_hidden_layers": 2,
}
)
random_aug: bool = False
random_aug_prob: float = 0.5
eval_color: Optional[Tuple[float, float, float]] = None
cfg: Config
def configure(self) -> None:
self.encoding = get_encoding(3, self.cfg.dir_encoding_config)
self.network = get_mlp(
self.encoding.n_output_dims,
self.cfg.n_output_dims,
self.cfg.mlp_network_config,
)
def forward(self, dirs: Float[Tensor, "B H W 3"]) -> Float[Tensor, "B H W Nc"]:
if not self.training and self.cfg.eval_color is not None:
return torch.ones(*dirs.shape[:-1], self.cfg.n_output_dims).to(
dirs
) * torch.as_tensor(self.cfg.eval_color).to(dirs)
# viewdirs must be normalized before passing to this function
dirs = (dirs + 1.0) / 2.0 # (-1, 1) => (0, 1)
dirs_embd = self.encoding(dirs.view(-1, 3))
color = self.network(dirs_embd).view(*dirs.shape[:-1], self.cfg.n_output_dims)
color = get_activation(self.cfg.color_activation)(color)
if (
self.training
and self.cfg.random_aug
and random.random() < self.cfg.random_aug_prob
):
# use random background color with probability random_aug_prob
color = color * 0 + ( # prevent checking for unused parameters in DDP
torch.rand(dirs.shape[0], 1, 1, self.cfg.n_output_dims)
.to(dirs)
.expand(*dirs.shape[:-1], -1)
)
return color