Update app.py
Browse files
app.py
CHANGED
|
@@ -1,29 +1,24 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
-
|
| 3 |
-
os.environ['
|
| 4 |
-
os.environ['
|
|
|
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
# Try to initialize Python's RNG with system entropy
|
| 9 |
-
random_bytes = os.urandom(16)
|
| 10 |
-
except Exception:
|
| 11 |
-
# Fallback to less secure method if system entropy fails
|
| 12 |
-
import time
|
| 13 |
-
os.environ['PYTHONHASHSEED'] = str(time.time())
|
| 14 |
-
|
| 15 |
-
import gradio as gr
|
| 16 |
-
import tensorflow as tf
|
| 17 |
import numpy as np
|
| 18 |
-
|
| 19 |
-
import json
|
| 20 |
|
| 21 |
-
#
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
import
|
|
|
|
| 27 |
from torch_geometric.data import Data
|
| 28 |
from torch_geometric.nn import GCNConv, global_mean_pool
|
| 29 |
import torch.nn.functional as F
|
|
@@ -45,33 +40,45 @@ class GNN(torch.nn.Module):
|
|
| 45 |
x = global_mean_pool(x, batch)
|
| 46 |
return self.fc(x)
|
| 47 |
|
| 48 |
-
#
|
| 49 |
cnn_model_path = "final_cnn_model.h5"
|
| 50 |
improved_model_path = "improved_model.h5"
|
| 51 |
gnn_model_path = "higgs_gnn_model_cpu.pth"
|
| 52 |
|
| 53 |
-
# Initialize models as None
|
| 54 |
cnn_model = None
|
| 55 |
improved_model = None
|
| 56 |
gnn_model = None
|
| 57 |
|
| 58 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
def predict_image(image):
|
| 60 |
-
global cnn_model
|
| 61 |
if image is None:
|
| 62 |
return "Error: No image provided"
|
| 63 |
if cnn_model is None:
|
| 64 |
-
|
| 65 |
-
print("Loading CNN model...")
|
| 66 |
-
cnn_model = tf.keras.models.load_model(cnn_model_path)
|
| 67 |
-
print("CNN model loaded successfully")
|
| 68 |
-
except Exception as e:
|
| 69 |
-
return f"Error loading CNN model: {e}"
|
| 70 |
try:
|
| 71 |
-
# Convert to grayscale and resize to (25, 25)
|
| 72 |
image = image.convert("L").resize((25, 25))
|
| 73 |
image_array = np.array(image) / 255.0
|
| 74 |
-
# Reshape to (1, 25, 25, 1) for the new model
|
| 75 |
image_array = np.expand_dims(image_array, axis=(0, -1))
|
| 76 |
prediction = cnn_model.predict(image_array)[0][0]
|
| 77 |
label = "Signal" if prediction > 0.5 else "Background"
|
|
@@ -80,67 +87,44 @@ def predict_image(image):
|
|
| 80 |
return f"Error processing image: {str(e)}"
|
| 81 |
|
| 82 |
def predict_numerical(data):
|
| 83 |
-
global improved_model
|
| 84 |
if not data:
|
| 85 |
return "Error: No numerical data provided"
|
| 86 |
if improved_model is None:
|
| 87 |
-
|
| 88 |
-
print("Loading Improved model...")
|
| 89 |
-
improved_model = tf.keras.models.load_model(improved_model_path)
|
| 90 |
-
print("Improved model loaded successfully")
|
| 91 |
-
except Exception as e:
|
| 92 |
-
return f"Error loading Improved model: {e}"
|
| 93 |
try:
|
| 94 |
-
# Convert comma-separated input to numpy array and reshape to (1, n_features)
|
| 95 |
input_data = np.array([float(x) for x in data.split(",")], dtype=np.float32)
|
| 96 |
-
# Check if the number of features matches the model's expected input
|
| 97 |
expected_features = improved_model.input_shape[1]
|
| 98 |
if len(input_data) != expected_features:
|
| 99 |
-
return f"Error: Expected {expected_features} features, got {len(input_data)}.
|
| 100 |
input_data = input_data.reshape(1, expected_features)
|
| 101 |
-
# Predict using the improved model
|
| 102 |
prediction = improved_model.predict(input_data)
|
| 103 |
-
# Get the class with the highest probability
|
| 104 |
predicted_class = np.argmax(prediction, axis=1)[0]
|
| 105 |
-
# Get the probability of the predicted class
|
| 106 |
confidence = prediction[0][predicted_class]
|
| 107 |
return f"Improved Model Prediction: Class {predicted_class} (Confidence: {confidence:.4f})"
|
| 108 |
except Exception as e:
|
| 109 |
return f"Error processing numerical data: {str(e)}"
|
| 110 |
|
| 111 |
def predict_graph(graph_json):
|
| 112 |
-
global gnn_model
|
| 113 |
if not graph_json:
|
| 114 |
return "Error: No graph JSON provided"
|
| 115 |
if gnn_model is None:
|
| 116 |
-
|
| 117 |
-
print("Loading GNN model...")
|
| 118 |
-
gnn_model = GNN()
|
| 119 |
-
gnn_model.load_state_dict(torch.load(gnn_model_path, map_location='cpu'))
|
| 120 |
-
gnn_model.eval()
|
| 121 |
-
print("GNN model loaded successfully")
|
| 122 |
-
except Exception as e:
|
| 123 |
-
return f"Error loading GNN model: {e}"
|
| 124 |
try:
|
| 125 |
graph_data = json.loads(graph_json)
|
| 126 |
-
|
| 127 |
-
# Convert to PyG Data format
|
| 128 |
x = torch.tensor(graph_data['x'], dtype=torch.float32)
|
| 129 |
edge_index = torch.tensor(graph_data['edge_index'], dtype=torch.long)
|
| 130 |
-
|
| 131 |
-
# Create a batch with single graph
|
| 132 |
data = Data(x=x, edge_index=edge_index)
|
| 133 |
data.batch = torch.zeros(data.num_nodes, dtype=torch.long)
|
| 134 |
-
|
| 135 |
with torch.no_grad():
|
| 136 |
out = gnn_model(data)
|
| 137 |
prob = F.softmax(out, dim=1)[0][1].item()
|
| 138 |
-
|
| 139 |
return f"GNN Prediction: Signal Probability = {prob:.4f}"
|
| 140 |
except Exception as e:
|
| 141 |
return f"Error processing graph: {str(e)}"
|
| 142 |
|
| 143 |
# Gradio Interface
|
|
|
|
|
|
|
| 144 |
with gr.Blocks(title="Multi-Model Gradio Interface") as demo:
|
| 145 |
gr.Markdown("## Multi-Model Prediction Interface")
|
| 146 |
|
|
|
|
| 1 |
+
# Set environment variables **before** importing libraries
|
| 2 |
import os
|
| 3 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Suppress TensorFlow warnings
|
| 4 |
+
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' # Disable oneDNN custom ops
|
| 5 |
+
os.environ['PYTHONHASHSEED'] = '0' # Ensure reproducibility
|
| 6 |
+
os.environ['PYTORCH_NO_CUDA_MEMORY_CACHING'] = '1' # Reduce RNG reliance
|
| 7 |
|
| 8 |
+
# Set deterministic behavior for PyTorch
|
| 9 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
import numpy as np
|
| 11 |
+
import tensorflow as tf
|
|
|
|
| 12 |
|
| 13 |
+
# Fix: Set seeds **before** model initialization
|
| 14 |
+
torch.manual_seed(42)
|
| 15 |
+
torch.use_deterministic_algorithms(True)
|
| 16 |
+
np.random.seed(42)
|
| 17 |
+
tf.random.set_seed(42)
|
| 18 |
|
| 19 |
+
# Import remaining libraries
|
| 20 |
+
import json
|
| 21 |
+
from PIL import Image
|
| 22 |
from torch_geometric.data import Data
|
| 23 |
from torch_geometric.nn import GCNConv, global_mean_pool
|
| 24 |
import torch.nn.functional as F
|
|
|
|
| 40 |
x = global_mean_pool(x, batch)
|
| 41 |
return self.fc(x)
|
| 42 |
|
| 43 |
+
# Load models
|
| 44 |
cnn_model_path = "final_cnn_model.h5"
|
| 45 |
improved_model_path = "improved_model.h5"
|
| 46 |
gnn_model_path = "higgs_gnn_model_cpu.pth"
|
| 47 |
|
| 48 |
+
# Initialize models as None
|
| 49 |
cnn_model = None
|
| 50 |
improved_model = None
|
| 51 |
gnn_model = None
|
| 52 |
|
| 53 |
+
# Load models with error handling
|
| 54 |
+
try:
|
| 55 |
+
cnn_model = tf.keras.models.load_model(cnn_model_path)
|
| 56 |
+
print(f"CNN model loaded successfully from {cnn_model_path}")
|
| 57 |
+
except Exception as e:
|
| 58 |
+
print(f"Error loading CNN model: {e}")
|
| 59 |
+
|
| 60 |
+
try:
|
| 61 |
+
improved_model = tf.keras.models.load_model(improved_model_path)
|
| 62 |
+
print(f"Improved model loaded successfully from {improved_model_path}")
|
| 63 |
+
except Exception as e:
|
| 64 |
+
print(f"Error loading Improved model: {e}")
|
| 65 |
+
|
| 66 |
+
try:
|
| 67 |
+
gnn_model = GNN()
|
| 68 |
+
gnn_model.load_state_dict(torch.load(gnn_model_path, map_location='cpu'))
|
| 69 |
+
gnn_model.eval()
|
| 70 |
+
except Exception as e:
|
| 71 |
+
print(f"Error loading GNN model: {e}")
|
| 72 |
+
|
| 73 |
+
# Prediction functions (unchanged from original)
|
| 74 |
def predict_image(image):
|
|
|
|
| 75 |
if image is None:
|
| 76 |
return "Error: No image provided"
|
| 77 |
if cnn_model is None:
|
| 78 |
+
return "Error: CNN model failed to load. Please check the model file."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
try:
|
|
|
|
| 80 |
image = image.convert("L").resize((25, 25))
|
| 81 |
image_array = np.array(image) / 255.0
|
|
|
|
| 82 |
image_array = np.expand_dims(image_array, axis=(0, -1))
|
| 83 |
prediction = cnn_model.predict(image_array)[0][0]
|
| 84 |
label = "Signal" if prediction > 0.5 else "Background"
|
|
|
|
| 87 |
return f"Error processing image: {str(e)}"
|
| 88 |
|
| 89 |
def predict_numerical(data):
|
|
|
|
| 90 |
if not data:
|
| 91 |
return "Error: No numerical data provided"
|
| 92 |
if improved_model is None:
|
| 93 |
+
return "Error: Improved model failed to load. Please check the model file."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
try:
|
|
|
|
| 95 |
input_data = np.array([float(x) for x in data.split(",")], dtype=np.float32)
|
|
|
|
| 96 |
expected_features = improved_model.input_shape[1]
|
| 97 |
if len(input_data) != expected_features:
|
| 98 |
+
return f"Error: Expected {expected_features} features, got {len(input_data)}."
|
| 99 |
input_data = input_data.reshape(1, expected_features)
|
|
|
|
| 100 |
prediction = improved_model.predict(input_data)
|
|
|
|
| 101 |
predicted_class = np.argmax(prediction, axis=1)[0]
|
|
|
|
| 102 |
confidence = prediction[0][predicted_class]
|
| 103 |
return f"Improved Model Prediction: Class {predicted_class} (Confidence: {confidence:.4f})"
|
| 104 |
except Exception as e:
|
| 105 |
return f"Error processing numerical data: {str(e)}"
|
| 106 |
|
| 107 |
def predict_graph(graph_json):
|
|
|
|
| 108 |
if not graph_json:
|
| 109 |
return "Error: No graph JSON provided"
|
| 110 |
if gnn_model is None:
|
| 111 |
+
return "Error: GNN model failed to load"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
try:
|
| 113 |
graph_data = json.loads(graph_json)
|
|
|
|
|
|
|
| 114 |
x = torch.tensor(graph_data['x'], dtype=torch.float32)
|
| 115 |
edge_index = torch.tensor(graph_data['edge_index'], dtype=torch.long)
|
|
|
|
|
|
|
| 116 |
data = Data(x=x, edge_index=edge_index)
|
| 117 |
data.batch = torch.zeros(data.num_nodes, dtype=torch.long)
|
|
|
|
| 118 |
with torch.no_grad():
|
| 119 |
out = gnn_model(data)
|
| 120 |
prob = F.softmax(out, dim=1)[0][1].item()
|
|
|
|
| 121 |
return f"GNN Prediction: Signal Probability = {prob:.4f}"
|
| 122 |
except Exception as e:
|
| 123 |
return f"Error processing graph: {str(e)}"
|
| 124 |
|
| 125 |
# Gradio Interface
|
| 126 |
+
import gradio as gr
|
| 127 |
+
|
| 128 |
with gr.Blocks(title="Multi-Model Gradio Interface") as demo:
|
| 129 |
gr.Markdown("## Multi-Model Prediction Interface")
|
| 130 |
|