Spaces:
Runtime error
Runtime error
Rough concept
Browse filesNeeds to be refined, answers are not always correct for each Keyword, Outline, and Article.
- .gitignore +3 -1
- app.py +72 -0
- blog-content-writer.code-workspace +11 -0
- requirements.txt +3 -0
.gitignore
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
.env
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
data
|
3 |
+
.chroma
|
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
from dotenv import dotenv_values
|
5 |
+
|
6 |
+
from langchain.prompts import PromptTemplate
|
7 |
+
from langchain.chains import RetrievalQA, LLMChain
|
8 |
+
from langchain.document_loaders import TextLoader
|
9 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
10 |
+
from langchain.llms import HuggingFaceEndpoint
|
11 |
+
from langchain.text_splitter import CharacterTextSplitter
|
12 |
+
from langchain.vectorstores import Chroma
|
13 |
+
|
14 |
+
env_vars = dotenv_values(".env")
|
15 |
+
|
16 |
+
# prepare Falcon Huggingface API
|
17 |
+
llm = HuggingFaceEndpoint(
|
18 |
+
endpoint_url= f"https://api-inference.huggingface.co/models/{env_vars['HUGGINGFACE_MODEL']}",
|
19 |
+
huggingfacehub_api_token=env_vars["HUGGINGFACE_API_TOKEN"],
|
20 |
+
task="text-generation",
|
21 |
+
model_kwargs = {
|
22 |
+
"min_length": 8192,
|
23 |
+
"max_length":8192,
|
24 |
+
"temperature":0.9,
|
25 |
+
"max_new_tokens":4000,
|
26 |
+
"num_return_sequences":1
|
27 |
+
}
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
keyword_prompt_template = "What are 10 important keywords related too: {word}? Only return a list of words and do not include any duplicates."
|
32 |
+
keyword_chain = LLMChain(
|
33 |
+
llm=llm,
|
34 |
+
prompt=PromptTemplate.from_template(keyword_prompt_template),
|
35 |
+
)
|
36 |
+
|
37 |
+
outline_prompt_template = "Create an outline for an article about: {word}."
|
38 |
+
outline_chain = LLMChain(
|
39 |
+
llm=llm,
|
40 |
+
prompt=PromptTemplate.from_template(outline_prompt_template),
|
41 |
+
)
|
42 |
+
|
43 |
+
article_prompt_template = """
|
44 |
+
Act as an expert SEO Writer.
|
45 |
+
Write a well crafted article using the given outline as a guide.
|
46 |
+
Use the relavant keywords you are provided.
|
47 |
+
Apply EEAT principles and SEO best practices.
|
48 |
+
It is important that the content is at least 1500 words.
|
49 |
+
Be sure to include section headers.
|
50 |
+
OUTLINE: {outline}
|
51 |
+
KEYWORDS: {keywords}
|
52 |
+
"""
|
53 |
+
article_chain = LLMChain(
|
54 |
+
llm=llm,
|
55 |
+
prompt=PromptTemplate.from_template(article_prompt_template),
|
56 |
+
)
|
57 |
+
|
58 |
+
st.title("Blog Writer")
|
59 |
+
keyword = st.text_input("Input the keyword you wish to write about")
|
60 |
+
|
61 |
+
if keyword:
|
62 |
+
with st.spinner("Writing..."):
|
63 |
+
st.write(f"Writing about: {keyword}")
|
64 |
+
with st.expander("Keywords"):
|
65 |
+
keywords = keyword_chain.run(keyword)
|
66 |
+
st.write(keywords)
|
67 |
+
with st.expander("Outline"):
|
68 |
+
outline = outline_chain.run(keyword)
|
69 |
+
st.write(outline)
|
70 |
+
with st.expander("Article"):
|
71 |
+
article = article_chain.run(outline=outline, keywords=keywords)
|
72 |
+
st.write(article)
|
blog-content-writer.code-workspace
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"folders": [
|
3 |
+
{
|
4 |
+
"path": "."
|
5 |
+
}
|
6 |
+
],
|
7 |
+
"settings": {
|
8 |
+
"files.autoSave": "onFocusChange",
|
9 |
+
"editor.cursorStyle": "block"
|
10 |
+
}
|
11 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
python-dotenv
|
3 |
+
transformers
|