thesven's picture
Update app.py
ac0ed37
import gradio as gr
from transformers import AutoTokenizer
def load_tokenizer(repo_path):
try:
# Load the tokenizer from the provided repository path
tokenizer = AutoTokenizer.from_pretrained(repo_path, trust_remote_code=True)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=False,
)
# Extract relevant details about the tokenizer and chat template
details = {
"Tokenizer Name": tokenizer.name_or_path,
"Vocabulary Size": tokenizer.vocab_size,
"Model Max Length": tokenizer.model_max_length,
"Special Tokens": tokenizer.all_special_tokens,
"Chat Template": input_ids,
}
# Convert details to a formatted string for display
details_str = "\n".join([f"{key}: {value}" for key, value in details.items()])
return details_str
except Exception as e:
return str(e)
# Create the Gradio interface
iface = gr.Interface(
fn=load_tokenizer,
inputs=gr.Textbox(label="Hugging Face Repository Path (e.g., user/repo)"),
outputs=gr.Textbox(label="Tokenizer Details"),
title="Hugging Face Tokenizer Loader",
description="Enter the Hugging Face repository path to load the tokenizer and view its details."
)
# Launch the app
iface.launch()